000255493 001__ 255493 000255493 005__ 20240221120258.0 000255493 0247_ $$2doi$$a10.1016/B978-0-12-821751-1.00016-6 000255493 0247_ $$2pmid$$apmid:36813312 000255493 0247_ $$2ISSN$$a0072-9752 000255493 0247_ $$2ISSN$$a2212-4152 000255493 0247_ $$2doi$$a10.1016/b978-0-12-821751-1.00016-6 000255493 0247_ $$2altmetric$$aaltmetric:142829530 000255493 037__ $$aDZNE-2023-00294 000255493 041__ $$aEnglish 000255493 082__ $$a610 000255493 1001_ $$aDistelmaier, Felix$$b0 000255493 245__ $$aNeuroimaging in mitochondrial disease. 000255493 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023 000255493 3367_ $$2DRIVER$$aarticle 000255493 3367_ $$2DataCite$$aOutput Types/Journal article 000255493 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708513297_22070$$xReview Article 000255493 3367_ $$2BibTeX$$aARTICLE 000255493 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000255493 3367_ $$00$$2EndNote$$aJournal Article 000255493 520__ $$aThe anatomic complexity of the brain in combination with its high energy demands makes this organ specifically vulnerable to defects of mitochondrial oxidative phosphorylation. Therefore, neurodegeneration is a hallmark of mitochondrial diseases. The nervous system of affected individuals typically shows selective regional vulnerability leading to distinct patterns of tissue damage. A classic example is Leigh syndrome, which causes symmetric alterations of basal ganglia and brain stem. Leigh syndrome can be caused by different genetic defects (>75 known disease genes) with variable disease onset ranging from infancy to adulthood. Other mitochondrial diseases are characterized by focal brain lesions, which is a core feature of MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes). Apart from gray matter, also white matter can be affected by mitochondrial dysfunction. White matter lesions vary depending on the underlying genetic defect and may progress into cystic cavities. In view of the recognizable patterns of brain damage in mitochondrial diseases, neuroimaging techniques play a key role in diagnostic work-up. In the clinical setting, magnetic resonance imaging (MRI) and MR spectroscopy (MRS) are the mainstay of diagnostic work-up. Apart from visualization of brain anatomy, MRS allows the detection of metabolites such as lactate, which is of specific interest in the context of mitochondrial dysfunction. However, it is important to note that findings like symmetric basal ganglia lesions on MRI or a lactate peak on MRS are not specific, and that there is a broad range of disorders that can mimic mitochondrial diseases on neuroimaging. In this chapter, we will review the spectrum of neuroimaging findings in mitochondrial diseases and discuss important differential diagnoses. Moreover, we will give an outlook on novel biomedical imaging tools that may provide interesting insights into mitochondrial disease pathophysiology. 000255493 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0 000255493 588__ $$aDataset connected to CrossRef Book Series, PubMed, , Journals: pub.dzne.de 000255493 650_7 $$2Other$$aBrain 000255493 650_7 $$2Other$$aCentral nervous system 000255493 650_7 $$2Other$$aLeigh disease 000255493 650_7 $$2Other$$aMagnetic resonance imaging 000255493 650_7 $$2Other$$aNeurodegeneration 000255493 650_7 $$2Other$$aOXPHOS 000255493 650_7 $$033X04XA5AT$$2NLM Chemicals$$aLactic Acid 000255493 650_2 $$2MeSH$$aHumans 000255493 650_2 $$2MeSH$$aLeigh Disease: diagnosis 000255493 650_2 $$2MeSH$$aLeigh Disease: pathology 000255493 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods 000255493 650_2 $$2MeSH$$aNeuroimaging: methods 000255493 650_2 $$2MeSH$$aBrain: pathology 000255493 650_2 $$2MeSH$$aMitochondrial Diseases: genetics 000255493 650_2 $$2MeSH$$aMELAS Syndrome: diagnosis 000255493 650_2 $$2MeSH$$aMELAS Syndrome: pathology 000255493 650_2 $$2MeSH$$aLactic Acid 000255493 7001_ $$0P:(DE-2719)2810704$$aKlopstock, Thomas$$b1$$eLast author$$udzne 000255493 773__ $$0PERI:(DE-600)2415767-3$$a10.1016/b978-0-12-821751-1.00016-6$$p173-185$$tHandbook of clinical neurology$$v194$$x0072-9752$$y2023 000255493 8564_ $$uhttps://pub.dzne.de/record/255493/files/DZNE-2023-00294_Restricted.pdf 000255493 8564_ $$uhttps://pub.dzne.de/record/255493/files/DZNE-2023-00294_Restricted.pdf?subformat=pdfa$$xpdfa 000255493 909CO $$ooai:pub.dzne.de:255493$$pVDB 000255493 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810704$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE 000255493 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0 000255493 9141_ $$y2023 000255493 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20 000255493 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20 000255493 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2019-12-20 000255493 9201_ $$0I:(DE-2719)1111015$$kClinical Research (Munich)$$lClinical Research (Munich)$$x0 000255493 980__ $$ajournal 000255493 980__ $$aVDB 000255493 980__ $$aI:(DE-2719)1111015 000255493 980__ $$aUNRESTRICTED