001     255496
005     20240403131748.0
024 7 _ |a 10.1186/s12885-023-10588-w
|2 doi
024 7 _ |a pmid:36809974
|2 pmid
024 7 _ |a pmc:PMC9942363
|2 pmc
024 7 _ |a altmetric:142820947
|2 altmetric
037 _ _ |a DZNE-2023-00297
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Quesnel, Agathe
|b 0
245 _ _ |a Glycosylation spectral signatures for glioma grade discrimination using Raman spectroscopy.
260 _ _ |a Heidelberg
|c 2023
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1711017840_32502
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC BY
520 _ _ |a Gliomas are the most common brain tumours with the high-grade glioblastoma representing the most aggressive and lethal form. Currently, there is a lack of specific glioma biomarkers that would aid tumour subtyping and minimally invasive early diagnosis. Aberrant glycosylation is an important post-translational modification in cancer and is implicated in glioma progression. Raman spectroscopy (RS), a vibrational spectroscopic label-free technique, has already shown promise in cancer diagnostics.RS was combined with machine learning to discriminate glioma grades. Raman spectral signatures of glycosylation patterns were used in serum samples and fixed tissue biopsy samples, as well as in single cells and spheroids.Glioma grades in fixed tissue patient samples and serum were discriminated with high accuracy. Discrimination between higher malignant glioma grades (III and IV) was achieved with high accuracy in tissue, serum, and cellular models using single cells and spheroids. Biomolecular changes were assigned to alterations in glycosylation corroborated by analysing glycan standards and other changes such as carotenoid antioxidant content.RS combined with machine learning could pave the way for more objective and less invasive grading of glioma patients, serving as a useful tool to facilitate glioma diagnosis and delineate biomolecular glioma progression changes.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Biomolecular signatures
|2 Other
650 _ 7 |a Diagnosis
|2 Other
650 _ 7 |a Glioblastoma
|2 Other
650 _ 7 |a Gliomas
|2 Other
650 _ 7 |a Glycosylation
|2 Other
650 _ 7 |a Raman spectroscopy
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Spectrum Analysis, Raman: methods
|2 MeSH
650 _ 2 |a Glycosylation
|2 MeSH
650 _ 2 |a Glioma: pathology
|2 MeSH
650 _ 2 |a Brain Neoplasms: pathology
|2 MeSH
650 _ 2 |a Glioblastoma: pathology
|2 MeSH
650 _ 2 |a Neoplasm Grading
|2 MeSH
700 1 _ |a Coles, Nathan
|b 1
700 1 _ |a Angione, Claudio
|b 2
700 1 _ |a Dey, Priyanka
|b 3
700 1 _ |a Polvikoski, Tuomo M
|b 4
700 1 _ |a Outeiro, Tiago F
|0 P:(DE-2719)2814138
|b 5
|u dzne
700 1 _ |a Islam, Meez
|b 6
700 1 _ |a Khundakar, Ahmad A
|b 7
700 1 _ |a Filippou, Panagiota S
|0 0000-0003-3974-988X
|b 8
773 _ _ |a 10.1186/s12885-023-10588-w
|g Vol. 23, no. 1, p. 174
|0 PERI:(DE-600)2041352-X
|n 1
|p 174
|t BMC cancer
|v 23
|y 2023
|x 1471-2407
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/255496/files/DZNE-2023-00297.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/255496/files/DZNE-2023-00297.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:255496
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2814138
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC CANCER : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-21T15:34:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-21T15:34:55Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-19
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2023-05-21T15:34:55Z
920 1 _ |0 I:(DE-2719)1410002
|k AG Fischer
|l Epigenetics and Systems Medicine in Neurodegenerative Diseases
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1410002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21