000256459 001__ 256459
000256459 005__ 20240112171741.0
000256459 0247_ $$2doi$$a10.1113/JP283401
000256459 0247_ $$2pmid$$apmid:36734280
000256459 0247_ $$2ISSN$$a0022-3751
000256459 0247_ $$2ISSN$$a1469-7793
000256459 0247_ $$2altmetric$$aaltmetric:142366350
000256459 037__ $$aDZNE-2023-00321
000256459 041__ $$aEnglish
000256459 082__ $$a610
000256459 1001_ $$00000-0002-6429-2423$$aMittag, Martin$$b0
000256459 245__ $$aModelling the contributions to hyperexcitability in a mouse model of Alzheimer's disease.
000256459 260__ $$aHoboken, NJ$$bWiley-Blackwell$$c2023
000256459 3367_ $$2DRIVER$$aarticle
000256459 3367_ $$2DataCite$$aOutput Types/Journal article
000256459 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1691420240_2440
000256459 3367_ $$2BibTeX$$aARTICLE
000256459 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256459 3367_ $$00$$2EndNote$$aJournal Article
000256459 500__ $$aCC BY
000256459 520__ $$aNeuronal hyperexcitability is a pathological characteristic of Alzheimer's disease (AD). Three main mechanisms have been proposed to explain it: (i) dendritic degeneration leading to increased input resistance, (ii) ion channel changes leading to enhanced intrinsic excitability, and (iii) synaptic changes leading to excitation-inhibition (E/I) imbalance. However, the relative contribution of these mechanisms is not fully understood. Therefore, we performed biophysically realistic multi-compartmental modelling of neuronal excitability in reconstructed CA1 pyramidal neurons from wild-type and APP/PS1 mice, a well-established animal model of AD. We show that, for synaptic activation, the excitability-promoting effects of dendritic degeneration are cancelled out by decreased excitation due to synaptic loss. We find an interesting balance between excitability regulation and an enhanced degeneration in the basal dendrites of APP/PS1 cells, potentially leading to increased excitation by the apical but decreased excitation by the basal Schaffer collateral pathway. Furthermore, our simulations reveal three pathomechanistic scenarios that can account for the experimentally observed increase in firing and bursting of CA1 pyramidal neurons in APP/PS1 mice: scenario 1: enhanced E/I ratio; scenario 2: alteration of intrinsic ion channels (IAHP down-regulated; INap , INa and ICaT up-regulated) in addition to enhanced E/I ratio; and scenario 3: increased excitatory burst input. Our work supports the hypothesis that pathological network and ion channel changes are major contributors to neuronal hyperexcitability in AD. Overall, our results are in line with the concept of multi-causality according to which multiple different disruptions are separately sufficient but no single particular disruption is necessary for neuronal hyperexcitability. KEY POINTS: This work presents simulations of synaptically driven responses in pyramidal cells (PCs) with Alzheimer's disease (AD)-related dendritic degeneration. Dendritic degeneration alone alters PC responses to layer-specific input but additional pathomechanistic scenarios are required to explain neuronal hyperexcitability in AD as follows. Possible scenario 1: AD-related increased excitatory input together with decreased inhibitory input (E/I imbalance) can lead to hyperexcitability in PCs. Possible scenario 2: changes in E/I balance combined with altered ion channel properties can account for hyperexcitability in AD. Possible scenario 3: burst hyperactivity of the surrounding network can explain hyperexcitability of PCs during AD.
000256459 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000256459 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000256459 650_2 $$2MeSH$$aMice
000256459 650_2 $$2MeSH$$aAnimals
000256459 650_2 $$2MeSH$$aAlzheimer Disease
000256459 650_2 $$2MeSH$$aHippocampus: physiology
000256459 650_2 $$2MeSH$$aNeurons: physiology
000256459 650_2 $$2MeSH$$aPyramidal Cells: physiology
000256459 650_2 $$2MeSH$$aIon Channels: metabolism
000256459 650_2 $$2MeSH$$aDisease Models, Animal
000256459 650_7 $$2NLM Chemicals$$aIon Channels
000256459 650_7 $$2Other$$adegeneracy
000256459 650_7 $$2Other$$adendritic constancy
000256459 650_7 $$2Other$$ahippocampus
000256459 650_7 $$2Other$$amorphological modelling
000256459 650_7 $$2Other$$amulti-causal pathogenesis
000256459 7001_ $$00000-0003-4174-4076$$aMediavilla, Laura$$b1
000256459 7001_ $$0P:(DE-2719)2810375$$aRemy, Stefan$$b2$$udzne
000256459 7001_ $$00000-0001-5445-0507$$aCuntz, Hermann$$b3
000256459 7001_ $$00000-0001-6571-5742$$aJedlicka, Peter$$b4
000256459 770__ $$aComputational neuroscience
000256459 773__ $$0PERI:(DE-600)1475290-6$$a10.1113/JP283401$$gp. JP283401$$n15$$p3403-3437$$tThe journal of physiology$$v601$$x0022-3751$$y2023
000256459 8564_ $$uhttps://pub.dzne.de/record/256459/files/DZNE-2023-00321%20SUP1.csv
000256459 8564_ $$uhttps://pub.dzne.de/record/256459/files/DZNE-2023-00321%20SUP1.ods
000256459 8564_ $$uhttps://pub.dzne.de/record/256459/files/DZNE-2023-00321%20SUP1.xls
000256459 8564_ $$uhttps://pub.dzne.de/record/256459/files/DZNE-2023-00321%20SUP1.xlsx
000256459 8564_ $$uhttps://pub.dzne.de/record/256459/files/DZNE-2023-00321%20SUP2.pdf
000256459 8564_ $$uhttps://pub.dzne.de/record/256459/files/DZNE-2023-00321%20SUP2.pdf?subformat=pdfa$$xpdfa
000256459 8564_ $$uhttps://pub.dzne.de/record/256459/files/DZNE-2023-00321.pdf$$yOpenAccess
000256459 8564_ $$uhttps://pub.dzne.de/record/256459/files/DZNE-2023-00321.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256459 909CO $$ooai:pub.dzne.de:256459$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000256459 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810375$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000256459 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000256459 9141_ $$y2023
000256459 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
000256459 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-08
000256459 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-08$$wger
000256459 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
000256459 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256459 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000256459 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYSIOL-LONDON : 2022$$d2023-10-21
000256459 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000256459 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000256459 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000256459 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000256459 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000256459 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000256459 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000256459 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000256459 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000256459 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYSIOL-LONDON : 2022$$d2023-10-21
000256459 9201_ $$0I:(DE-2719)1013006$$kAG Remy$$lNeuronal Networks$$x0
000256459 980__ $$ajournal
000256459 980__ $$aVDB
000256459 980__ $$aI:(DE-2719)1013006
000256459 980__ $$aUNRESTRICTED
000256459 9801_ $$aFullTexts