000256466 001__ 256466
000256466 005__ 20231004134628.0
000256466 0247_ $$2doi$$a10.7554/eLife.83176
000256466 0247_ $$2pmid$$apmid:36749020
000256466 0247_ $$2pmc$$apmc:PMC9946443
000256466 0247_ $$2altmetric$$aaltmetric:142274602
000256466 037__ $$aDZNE-2023-00328
000256466 041__ $$aEnglish
000256466 082__ $$a600
000256466 1001_ $$0P:(DE-2719)2811414$$aNebeling, Felix Christopher$$b0$$eFirst author
000256466 245__ $$aMicroglial motility is modulated by neuronal activity and correlates with dendritic spine plasticity in the hippocampus of awake mice.
000256466 260__ $$aCambridge$$beLife Sciences Publications$$c2023
000256466 3367_ $$2DRIVER$$aarticle
000256466 3367_ $$2DataCite$$aOutput Types/Journal article
000256466 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680084302_6870
000256466 3367_ $$2BibTeX$$aARTICLE
000256466 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256466 3367_ $$00$$2EndNote$$aJournal Article
000256466 500__ $$aCC BY
000256466 520__ $$aMicroglia, the resident immune cells of the brain, play a complex role in health and disease. They actively survey the brain parenchyma by physically interacting with other cells and structurally shaping the brain. Yet, the mechanisms underlying microglial motility and significance for synapse stability, especially in the hippocampus during adulthood, remain widely unresolved. Here, we investigated the effect of neuronal activity on microglial motility and the implications for the formation and survival of dendritic spines on hippocampal CA1 neurons in vivo. We used repetitive two-photon in vivo imaging in the hippocampus of awake and anesthetized mice to simultaneously study the motility of microglia and their interaction with dendritic spines. We found that CA3 to CA1 input is sufficient to modulate microglial process motility. Simultaneously, more dendritic spines emerged in mice after awake compared to anesthetized imaging. Interestingly, the rate of microglial contacts with individual dendritic spines and dendrites was associated with the stability, removal, and emergence of dendritic spines. These results suggest that microglia might sense neuronal activity via neurotransmitter release and actively participate in synaptic rewiring of the hippocampal neural network during adulthood. Further, this study has profound relevance for hippocampal learning and memory processes.
000256466 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000256466 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000256466 650_7 $$2Other$$achemogenetics
000256466 650_7 $$2Other$$adendritic spines
000256466 650_7 $$2Other$$ahippocampus
000256466 650_7 $$2Other$$amicroglia
000256466 650_7 $$2Other$$amouse
000256466 650_7 $$2Other$$aneuroscience
000256466 650_7 $$2Other$$atwo-photon
000256466 650_2 $$2MeSH$$aMice
000256466 650_2 $$2MeSH$$aAnimals
000256466 650_2 $$2MeSH$$aMicroglia: physiology
000256466 650_2 $$2MeSH$$aDendritic Spines: physiology
000256466 650_2 $$2MeSH$$aWakefulness
000256466 650_2 $$2MeSH$$aHippocampus: physiology
000256466 650_2 $$2MeSH$$aNeurons
000256466 650_2 $$2MeSH$$aNeuronal Plasticity: physiology
000256466 693__ $$0EXP:(DE-2719)LMF-20190308$$5EXP:(DE-2719)LMF-20190308$$eLight Microscope Facility (CRFS-LMF) / Bonn$$x0
000256466 7001_ $$0P:(DE-2719)2810397$$aPoll, Stefanie$$b1
000256466 7001_ $$0P:(DE-2719)9002653$$aJustus, Lena Christine$$b2$$udzne
000256466 7001_ $$0P:(DE-2719)2810279$$aSteffen, Julia$$b3
000256466 7001_ $$0P:(DE-2719)2810624$$aKeppler, Kevin$$b4
000256466 7001_ $$0P:(DE-2719)2811044$$aMittag, Manuel$$b5
000256466 7001_ $$0P:(DE-2719)2679991$$aFuhrmann, Martin$$b6$$eLast author
000256466 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.83176$$gVol. 12, p. e83176$$pe83176$$teLife$$v12$$x2050-084X$$y2023
000256466 8564_ $$uhttps://pub.dzne.de/record/256466/files/DZNE-2023-00328.pdf$$yOpenAccess
000256466 8564_ $$uhttps://pub.dzne.de/record/256466/files/DZNE-2023-00328.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256466 909CO $$ooai:pub.dzne.de:256466$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000256466 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811414$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000256466 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810397$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000256466 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002653$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000256466 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810279$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000256466 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810624$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000256466 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811044$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000256466 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2679991$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000256466 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000256466 9141_ $$y2023
000256466 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
000256466 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-23
000256466 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-23T12:20:44Z
000256466 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-23T12:20:44Z
000256466 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
000256466 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-23
000256466 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256466 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-23
000256466 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000256466 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2022$$d2023-08-22
000256466 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
000256466 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
000256466 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-22
000256466 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-09-23T12:20:44Z
000256466 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-22
000256466 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-22
000256466 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
000256466 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
000256466 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
000256466 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-22
000256466 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2022$$d2023-08-22
000256466 9201_ $$0I:(DE-2719)1011004$$kAG Fuhrmann$$lNeuroimmunology and Imaging$$x0
000256466 9201_ $$0I:(DE-2719)1040180$$kLMF$$lLight Microscopy Facility (LMF)$$x1
000256466 980__ $$ajournal
000256466 980__ $$aVDB
000256466 980__ $$aUNRESTRICTED
000256466 980__ $$aI:(DE-2719)1011004
000256466 980__ $$aI:(DE-2719)1040180
000256466 9801_ $$aFullTexts