000257327 001__ 257327
000257327 005__ 20231120155338.0
000257327 0247_ $$2doi$$a10.1002/hipo.23522
000257327 0247_ $$2pmid$$apmid:36880417
000257327 0247_ $$2ISSN$$a1050-9631
000257327 0247_ $$2ISSN$$a1098-1063
000257327 0247_ $$2altmetric$$aaltmetric:144530038
000257327 037__ $$aDZNE-2023-00396
000257327 041__ $$aEnglish
000257327 082__ $$a610
000257327 1001_ $$0P:(DE-2719)9001448$$aBogado Lopes, Jadna$$b0$$eFirst author$$udzne
000257327 245__ $$aLoss of individualized behavioral trajectories in adult neurogenesis-deficient cyclin D2 knockout mice.
000257327 260__ $$aNew York, NY [u.a.]$$bWiley$$c2023
000257327 3367_ $$2DRIVER$$aarticle
000257327 3367_ $$2DataCite$$aOutput Types/Journal article
000257327 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680774419_19770
000257327 3367_ $$2BibTeX$$aARTICLE
000257327 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000257327 3367_ $$00$$2EndNote$$aJournal Article
000257327 500__ $$aCC BY-NC
000257327 520__ $$aThere is still limited mechanistic insight into how the interaction of individuals with their environment results in the emergence of individuality in behavior and brain structure. Nevertheless, the idea that personal activity shapes the brain is implicit in strategies for healthy cognitive aging as well as in the idea that individuality is reflected in the brain's connectome. We have shown that even isogenic mice kept in a shared enriched environment (ENR) developed divergent and stable social and exploratory trajectories. As these trajectories-measured as roaming entropy (RE)-positively correlated with adult hippocampal neurogenesis, we hypothesized that a feedback between behavioral activity and adult hippocampal neurogenesis might be a causal factor in brain individualization. We used cyclin D2 knockout mice with constitutively extremely low levels of adult hippocampal neurogenesis and their wild-type littermates. We housed them for 3 months in a novel ENR paradigm, consisting of 70 connected cages equipped with radio frequency identification antennae for longitudinal tracking. Cognitive performance was evaluated in the Morris Water Maze task (MWM). With immunohistochemistry we confirmed that adult neurogenesis correlated with RE in both genotypes and that D2 knockout mice had the expected impaired performance in the reversal phase of the MWM. But whereas the wild-type animals developed stable exploratory trajectories with increasing variance, correlating with adult neurogenesis, this individualizing phenotype was absent in D2 knockout mice. Here the behaviors started out more random and revealed less habituation and low variance. Together, these findings suggest that adult neurogenesis contributes to experience-dependent brain individualization.
000257327 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000257327 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000257327 650_7 $$2Other$$ahippocampus
000257327 650_7 $$2Other$$ahome cage monitoring
000257327 650_7 $$2Other$$alearning and memory
000257327 650_7 $$2Other$$aplasticity
000257327 650_7 $$2Other$$astem cell
000257327 650_7 $$2NLM Chemicals$$aCyclin D2
000257327 650_2 $$2MeSH$$aMice
000257327 650_2 $$2MeSH$$aAnimals
000257327 650_2 $$2MeSH$$aMice, Knockout
000257327 650_2 $$2MeSH$$aCyclin D2: genetics
000257327 650_2 $$2MeSH$$aMaze Learning
000257327 650_2 $$2MeSH$$aHippocampus
000257327 650_2 $$2MeSH$$aNeurogenesis: genetics
000257327 650_2 $$2MeSH$$aMice, Inbred C57BL
000257327 7001_ $$0P:(DE-2719)2812316$$aMalz, Monika$$b1$$udzne
000257327 7001_ $$0P:(DE-2719)9002273$$aSenko, Anna N$$b2$$udzne
000257327 7001_ $$0P:(DE-2719)2810548$$aZocher, Sara$$b3$$udzne
000257327 7001_ $$0P:(DE-2719)2000011$$aKempermann, Gerd$$b4
000257327 773__ $$0PERI:(DE-600)1498049-6$$a10.1002/hipo.23522$$gVol. 33, no. 4, p. 360 - 372$$n4$$p360 - 372$$tHippocampus$$v33$$x1050-9631$$y2023
000257327 8564_ $$uhttps://pub.dzne.de/record/257327/files/DZNE-2023-00396.pdf$$yOpenAccess
000257327 8564_ $$uhttps://pub.dzne.de/record/257327/files/DZNE-2023-00396.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000257327 909CO $$ooai:pub.dzne.de:257327$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000257327 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001448$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000257327 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812316$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000257327 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002273$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000257327 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810548$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000257327 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000011$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000257327 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000257327 9141_ $$y2023
000257327 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
000257327 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-22
000257327 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000257327 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-22$$wger
000257327 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
000257327 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000257327 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000257327 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000257327 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000257327 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000257327 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000257327 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000257327 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000257327 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHIPPOCAMPUS : 2022$$d2023-10-21
000257327 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000257327 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000257327 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000257327 9201_ $$0I:(DE-2719)1710001$$kAG Kempermann 1$$lAdult Neurogenesis$$x0
000257327 9201_ $$0I:(DE-2719)1710014$$kAG Toda$$lNuclear Architecture in Neural Plasticity and Aging$$x1
000257327 980__ $$ajournal
000257327 980__ $$aVDB
000257327 980__ $$aUNRESTRICTED
000257327 980__ $$aI:(DE-2719)1710001
000257327 980__ $$aI:(DE-2719)1710014
000257327 9801_ $$aFullTexts