000257339 001__ 257339
000257339 005__ 20231120155338.0
000257339 0247_ $$2doi$$a10.1523/ENEURO.0479-22.2023
000257339 0247_ $$2pmid$$apmid:36894320
000257339 0247_ $$2pmc$$apmc:PMC10062487
000257339 0247_ $$2altmetric$$aaltmetric:145041452
000257339 037__ $$aDZNE-2023-00408
000257339 041__ $$aEnglish
000257339 082__ $$a610
000257339 1001_ $$0P:(DE-2719)9002581$$aBrahimi, Yacine$$b0$$eFirst author$$udzne
000257339 245__ $$aPersistent Firing in Hippocampal CA1 Pyramidal Cells in Young and Aged Rats.
000257339 260__ $$aWashington, DC$$bSoc.$$c2023
000257339 3367_ $$2DRIVER$$aarticle
000257339 3367_ $$2DataCite$$aOutput Types/Journal article
000257339 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683882540_24935
000257339 3367_ $$2BibTeX$$aARTICLE
000257339 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000257339 3367_ $$00$$2EndNote$$aJournal Article
000257339 500__ $$aCC BY
000257339 520__ $$aPersistent neuronal firing is often observed in working memory and temporal association tasks both in humans and animals, and is believed to retain necessary information in these tasks. We have reported that hippocampal CA1 pyramidal cells are able to support persistent firing through intrinsic mechanisms in the presence of cholinergic agonists. However, it still remains largely unknown how persistent firing is affected by the development of animals and aging. Using in vitro patch-clamp recordings from CA1 pyramidal cells in rat brain slices, we first show that the cellular excitability of these aged rats was significantly lower than that of the young rats, responding with fewer spikes to current injection. In addition, we found age-dependent modulations of input resistance, membrane capacitance, and spike width. However, persistent firing in aged (approximately two-year-old) rats was as strong as that in young animals, and the properties of persistent firing were very similar among different age groups. In addition, medium spike afterhyperpolarization potential (mAHP), was not increased by aging and did not correlate with the strength of persistent firing. Lastly, we estimated the depolarization current induced by the cholinergic activation. This current was proportional to the increased membrane capacitance of the aged group and was inversely correlated with their intrinsic excitability. These observations indicate that robust persistent firing can be maintained in aged rats despite reduced excitability, because of the increased amount of cholinergically induced positive current.
000257339 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000257339 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000257339 650_7 $$2Other$$aafterhyperpolarization
000257339 650_7 $$2Other$$aaged rats
000257339 650_7 $$2Other$$acholinergic agonist
000257339 650_7 $$2Other$$adepolarization current
000257339 650_7 $$2Other$$ahippocampus
000257339 650_7 $$2Other$$apersistent firing
000257339 650_7 $$2NLM Chemicals$$aCholinergic Agents
000257339 650_2 $$2MeSH$$aHumans
000257339 650_2 $$2MeSH$$aRats
000257339 650_2 $$2MeSH$$aAnimals
000257339 650_2 $$2MeSH$$aChild, Preschool
000257339 650_2 $$2MeSH$$aPyramidal Cells: physiology
000257339 650_2 $$2MeSH$$aHippocampus: physiology
000257339 650_2 $$2MeSH$$aAction Potentials: physiology
000257339 650_2 $$2MeSH$$aNeurons
000257339 650_2 $$2MeSH$$aCholinergic Agents
000257339 7001_ $$aKnauer, Beate$$b1
000257339 7001_ $$0P:(DE-2719)9001562$$aPrice, Alan Tobias$$b2$$udzne
000257339 7001_ $$aValero-Aracama, Maria Jesus$$b3
000257339 7001_ $$0P:(DE-2719)2813728$$aReboreda, Antonio$$b4$$udzne
000257339 7001_ $$aSauvage, Magdalena$$b5
000257339 7001_ $$0P:(DE-2719)2811873$$aYoshida, Motoharu$$b6$$eLast author$$udzne
000257339 773__ $$0PERI:(DE-600)2800598-3$$a10.1523/ENEURO.0479-22.2023$$gVol. 10, no. 3, p. ENEURO.0479-22.2023 -$$n3$$pENEURO.0479-22.2023$$teNeuro$$v10$$x2373-2822$$y2023
000257339 8564_ $$uhttps://pub.dzne.de/record/257339/files/DZNE-2023-00408.pdf$$yOpenAccess
000257339 8564_ $$uhttps://pub.dzne.de/record/257339/files/DZNE-2023-00408.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000257339 909CO $$ooai:pub.dzne.de:257339$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000257339 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002581$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000257339 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001562$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000257339 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2813728$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000257339 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811873$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000257339 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000257339 9141_ $$y2023
000257339 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000257339 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000257339 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2017-10-05T09:48:20Z
000257339 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2017-10-05T09:48:20Z
000257339 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2017-10-05T09:48:20Z
000257339 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-03-30
000257339 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
000257339 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
000257339 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
000257339 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
000257339 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2017-10-05T09:48:20Z
000257339 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENEURO : 2022$$d2023-10-26
000257339 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000257339 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000257339 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000257339 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000257339 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
000257339 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000257339 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-26
000257339 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
000257339 9201_ $$0I:(DE-2719)1310011$$kAG Yoshida$$lCognitive Neurophysiology$$x0
000257339 980__ $$ajournal
000257339 980__ $$aVDB
000257339 980__ $$aI:(DE-2719)1310011
000257339 980__ $$aUNRESTRICTED
000257339 9801_ $$aFullTexts