001     257584
005     20240112171631.0
024 7 _ |a 10.1002/glia.24369
|2 doi
024 7 _ |a pmid:37026600
|2 pmid
024 7 _ |a 0894-1491
|2 ISSN
024 7 _ |a 1098-1136
|2 ISSN
024 7 _ |a altmetric:145398054
|2 altmetric
037 _ _ |a DZNE-2023-00460
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rahman, Kazi Atikur
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Microglia actively remove NR1 autoantibody-bound NMDA receptors and associated post-synaptic proteins in neuron microglia co-cultures.
260 _ _ |a Bognor Regis [u.a.]
|c 2023
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1687164890_9363
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Autoantibodies against the NR1 subunit of NMDA receptors (NMDARs) have been shown to promote crosslinking and internalization of bound receptors in NMDAR encephalitis (NMDARE). This internalization-mediated loss of NMDARs is thought to be the major mechanism leading to pathogenic outcomes in patients. However, the role of bound autoantibody in engaging the resident immune cells, microglia, remains poorly understood. Here, using a patient-derived monoclonal NR1 autoantibody (hNR1-mAb) and a co-culture system of microglia and neurons, we could show that hNR1-mAb bound to hippocampal neurons led to microglia-mediated removal of hNR1-mAb bound NMDARs. These complexes were found to accumulate inside endo-lysosomal compartments of microglia. Utilizing another patient isolated monoclonal autoantibody, against the α1-subunit of GABAA receptors (α1-GABAA -mAb), such removal of receptors was found to be specific to the antibody-bound receptor targets. Interestingly, along with receptor removal, we also observed a reduction in synapse number, more specifically in the numbers of post-synaptic proteins like PSD95 and Homer 1, when microglia were present in the culture. Importantly, mutations in the Fc region of hNR1-mAb, blocking its Fcγ receptor (FcγR) and complement binding, attenuated hNR1-mAb driven loss of NMDARs and synapses, indicating that microglia engagement by bound hNR1-mAb is critical for receptor and synapse loss. Our data argues for an active involvement of microglia in removal of NMDARs and other receptors in individuals with autoimmune encephalitis, thereby contributing to the etiology of these diseases.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Receptors, N-Methyl-D-Aspartate: genetics
|2 MeSH
650 _ 2 |a Receptors, N-Methyl-D-Aspartate: metabolism
|2 MeSH
650 _ 2 |a Autoantibodies: metabolism
|2 MeSH
650 _ 2 |a Coculture Techniques
|2 MeSH
650 _ 2 |a Microglia: metabolism
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a gamma-Aminobutyric Acid: metabolism
|2 MeSH
650 _ 7 |a co-culture
|2 Other
650 _ 7 |a NMDAR
|2 Other
650 _ 7 |a antibody mediated autoimmune encephalitis
|2 Other
650 _ 7 |a autoantibodies
|2 Other
650 _ 7 |a microglia, hippocampal neurons, co-culture, pre-labeling
|2 Other
650 _ 7 |a hippocampal neurons
|2 Other
650 _ 7 |a microglia
|2 Other
650 _ 7 |a pre-labeling
|2 Other
650 _ 7 |a Receptors, N-Methyl-D-Aspartate
|2 NLM Chemicals
650 _ 7 |a Autoantibodies
|2 NLM Chemicals
650 _ 7 |a gamma-Aminobutyric Acid
|0 56-12-2
|2 NLM Chemicals
700 1 _ |a Orlando, Marta
|b 1
700 1 _ |a Boulos, Ayub
|b 2
700 1 _ |a Andrzejak, Ewa
|0 P:(DE-2719)2811708
|b 3
|u dzne
700 1 _ |a Schmitz, Dietmar
|0 P:(DE-2719)2810725
|b 4
|u dzne
700 1 _ |a Ziv, Noam E
|b 5
700 1 _ |a Prüss, Harald
|0 P:(DE-2719)2810931
|b 6
|u dzne
700 1 _ |a Garner, Craig C
|0 P:(DE-2719)2810922
|b 7
|u dzne
700 1 _ |a Ichkova, Aleksandra
|0 P:(DE-2719)9000590
|b 8
|e Last author
|u dzne
773 _ _ |a 10.1002/glia.24369
|g p. glia.24369
|0 PERI:(DE-600)1474828-9
|n 8
|p 1804-1829
|t Glia
|v 71
|y 2023
|x 0894-1491
856 4 _ |u https://onlinelibrary.wiley.com/doi/10.1002/glia.24369
856 4 _ |u https://pub.dzne.de/record/257584/files/DZNE-2023-00460%20SUP.zip
856 4 _ |u https://pub.dzne.de/record/257584/files/DZNE-2023-00460.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/257584/files/DZNE-2023-00460.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:257584
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811708
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810725
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810931
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810922
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9000590
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-08
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GLIA : 2022
|d 2023-08-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GLIA : 2022
|d 2023-08-24
920 1 _ |0 I:(DE-2719)1810001
|k AG Garner
|l Synaptopathy
|x 0
920 1 _ |0 I:(DE-2719)1810004
|k AG Schmitz 1 ; AG Schmitz
|l Network Dysfunction
|x 1
920 1 _ |0 I:(DE-2719)1810003
|k AG Prüß
|l Autoimmune Enzephalopathies
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1810001
980 _ _ |a I:(DE-2719)1810004
980 _ _ |a I:(DE-2719)1810003
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21