001     257694
005     20240816140625.0
024 7 _ |a 10.1016/j.stem.2017.08.012
|2 doi
024 7 _ |a pmid:28919367
|2 pmid
024 7 _ |a 1934-5909
|2 ISSN
024 7 _ |a 1875-9777
|2 ISSN
037 _ _ |a DZNE-2023-00491
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Toda, Tomohisa
|0 P:(DE-2719)2814117
|b 0
|u dzne
245 _ _ |a Nup153 Interacts with Sox2 to Enable Bimodal Gene Regulation and Maintenance of Neural Progenitor Cells.
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723809936_29091
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neural progenitor cells (NeuPCs) possess a unique nuclear architecture that changes during differentiation. Nucleoporins are linked with cell-type-specific gene regulation, coupling physical changes in nuclear structure to transcriptional output; but, whether and how they coordinate with key fate-determining transcription factors is unclear. Here we show that the nucleoporin Nup153 interacts with Sox2 in adult NeuPCs, where it is indispensable for their maintenance and controls neuronal differentiation. Genome-wide analyses show that Nup153 and Sox2 bind and co-regulate hundreds of genes. Binding of Nup153 to gene promoters or transcriptional end sites correlates with increased or decreased gene expression, respectively, and inhibiting Nup153 expression alters open chromatin configurations at its target genes, disrupts genomic localization of Sox2, and promotes differentiation in vitro and a gliogenic fate switch in vivo. Together, these findings reveal that nuclear structural proteins may exert bimodal transcriptional effects to control cell fate.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Nup153
|2 Other
650 _ 7 |a Sox2
|2 Other
650 _ 7 |a adult neurogenesis
|2 Other
650 _ 7 |a bimodal gene regulation
|2 Other
650 _ 7 |a cell fate
|2 Other
650 _ 7 |a key transcription factors
|2 Other
650 _ 7 |a neural differentiation
|2 Other
650 _ 7 |a neural progenitor cells
|2 Other
650 _ 7 |a nucleoporins
|2 Other
650 _ 7 |a spatial transcriptional regulation
|2 Other
650 _ 7 |a Chromatin
|2 NLM Chemicals
650 _ 7 |a Nuclear Pore Complex Proteins
|2 NLM Chemicals
650 _ 7 |a Nup153 protein, mouse
|2 NLM Chemicals
650 _ 7 |a SOXB1 Transcription Factors
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Chromatin: metabolism
|2 MeSH
650 _ 2 |a Gene Expression Regulation
|2 MeSH
650 _ 2 |a Genome
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Neural Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Neurogenesis: genetics
|2 MeSH
650 _ 2 |a Nuclear Pore Complex Proteins: metabolism
|2 MeSH
650 _ 2 |a Protein Binding
|2 MeSH
650 _ 2 |a SOXB1 Transcription Factors: metabolism
|2 MeSH
650 _ 2 |a Transcription, Genetic
|2 MeSH
700 1 _ |a Hsu, Jonathan Y
|b 1
700 1 _ |a Linker, Sara B
|b 2
700 1 _ |a Hu, Lauren
|b 3
700 1 _ |a Schafer, Simon T
|b 4
700 1 _ |a Mertens, Jerome
|b 5
700 1 _ |a Jacinto, Filipe V
|b 6
700 1 _ |a Hetzer, Martin W
|b 7
700 1 _ |a Gage, Fred H
|b 8
773 _ _ |a 10.1016/j.stem.2017.08.012
|g Vol. 21, no. 5, p. 618 - 634.e7
|0 PERI:(DE-600)2375356-0
|n 5
|p 618 - 634.e7
|t Cell stem cell
|v 21
|y 2017
|x 1934-5909
856 4 _ |u https://pub.dzne.de/record/257694/files/DZNE-2023-00491.pdf
856 4 _ |u https://pub.dzne.de/record/257694/files/DZNE-2023-00491.pdf?subformat=pdfa
|x pdfa
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-2719)2814117
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL STEM CELL : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-22
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b CELL STEM CELL : 2021
|d 2022-11-22
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a I:(DE-2719)1710014
980 _ _ |a I:(DE-2719)1040260
980 1 _ |a EXTERN4VITA


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21