001     257788
005     20240129114736.0
024 7 _ |a 10.37188/lam.2022.023
|2 doi
037 _ _ |a DZNE-2023-00503
100 1 _ |a Koukourakis, Nektarios
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Investigation of human organoid retina with digital holographic transmission matrix measurements
260 _ _ |c 2022
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706518870_12567
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Journal: Light: Advanced Manufacturing, ISSN: 2689-9620
520 _ _ |a Advanced manufacturing of retinal organoid samples from human induced pluripotent stem cells represents a promising way to study the development of retinal diseases. The retina is an epithelium composed of different cell layers with unique optical properties and detects light by photoreceptor neurons for visual function. There are still many challenges in detecting early and distinct cellular changes in retinal disease. In this paper, we study the capability of the optical transmission matrix, which fully describes the transition of a light field propagating through a scattering sample. Despite its rich information content, the transmission matrix is commonly just used for light delivery through scattering media. Digital holography is employed to measure the complex light-field information of the transmitted light. We demonstrate that singular value decomposition of the transmission matrix allows to discriminate phantom tissues with varying scattering coefficient. We apply these findings to retinal organoid tissues. Application of the protonophore carbonyl cyanide m-chloro-phenylhydrazone (CCCP), a known inducer of retinal damage in animals, caused cell death and structural changes in human retinal organoids, which resulted in distinct changes in the transmission matrix. Our data indicate that the analysis of the transmission matrix can distinguish pathologic changes of the retina towards the development of imaging-based biomarkers.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
700 1 _ |a Wagner, Felix
|0 P:(DE-2719)2811441
|b 1
|u dzne
700 1 _ |a Rothe, Stefan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Karl, Mike Oliver
|0 P:(DE-2719)2000041
|b 3
|u dzne
700 1 _ |a Czarske, Jürgen W
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.37188/lam.2022.023
|g Vol. 3, no. 2, p. 1 -
|n 2
|p 211-225
|v 3
|y 2022
856 4 _ |u https://www.light-am.com/article/doi/10.37188/lam.2022.023
856 4 _ |u https://pub.dzne.de/record/257788/files/DZNE-2023-00503.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/257788/files/DZNE-2023-00503.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:257788
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811441
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2000041
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-2719)1710004
|k AG Karl
|l Retina Regeneration and Degeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1710004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21