001     257999
005     20231126001815.0
024 7 _ |a 10.1523/JNEUROSCI.1692-22.2023
|2 doi
024 7 _ |a pmid:37001994
|2 pmid
024 7 _ |a pmc:PMC10184749
|2 pmc
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a altmetric:155248259
|2 altmetric
037 _ _ |a DZNE-2023-00529
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Döhler, Juliane
|0 P:(DE-2719)2812088
|b 0
|e First author
|u dzne
245 _ _ |a The 3D Structural Architecture of the Human Hand Area Is Nontopographic.
260 _ _ |a Washington, DC
|c 2023
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1686662400_29081
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The functional topography of the human primary somatosensory cortex hand area is a widely studied model system to understand sensory organization and plasticity. It is so far unclear whether the underlying 3D structural architecture also shows a topographic organization. We used 7 Tesla (7T) magnetic resonance imaging (MRI) data to quantify layer-specific myelin, iron, and mineralization in relation to population receptive field maps of individual finger representations in Brodman area 3b (BA 3b) of human S1 in female and male younger adults. This 3D description allowed us to identify a characteristic profile of layer-specific myelin and iron deposition in the BA 3b hand area, but revealed an absence of structural differences, an absence of low-myelin borders, and high similarity of 3D microstructure profiles between individual fingers. However, structural differences and borders were detected between the hand and face areas. We conclude that the 3D structural architecture of the human hand area is nontopographic, unlike in some monkey species, which suggests a high degree of flexibility for functional finger organization and a new perspective on human topographic plasticity.SIGNIFICANCE STATEMENT Using ultra-high-field MRI, we provide the first comprehensive in vivo description of the 3D structural architecture of the human BA 3b hand area in relation to functional population receptive field maps. High similarity of precise finger-specific 3D profiles, together with an absence of structural differences and an absence of low-myelin borders between individual fingers, reveals the 3D structural architecture of the human hand area to be nontopographic. This suggests reduced structural limitations to cortical plasticity and reorganization and allows for shared representational features across fingers.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a UHF MRI
|2 Other
650 _ 7 |a cortical field
|2 Other
650 _ 7 |a in vivo myeloarchitecture
|2 Other
650 _ 7 |a parcellation
|2 Other
650 _ 7 |a quantitative imaging
|2 Other
650 _ 7 |a septa
|2 Other
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Somatosensory Cortex
|2 MeSH
650 _ 2 |a Hand
|2 MeSH
650 _ 2 |a Fingers
|2 MeSH
650 _ 2 |a Cerebral Cortex
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Brain Mapping: methods
|2 MeSH
700 1 _ |a Northall, Alicia
|0 P:(DE-2719)9000681
|b 1
|u dzne
700 1 _ |a Liu, Peng
|0 P:(DE-2719)9000645
|b 2
|u dzne
700 1 _ |a Fracasso, Alessio
|b 3
700 1 _ |a Chrysidou, Anastasia
|0 P:(DE-2719)9001858
|b 4
|u dzne
700 1 _ |a Speck, Oliver
|0 P:(DE-2719)2810706
|b 5
|u dzne
700 1 _ |a Lohmann, Gabriele
|b 6
700 1 _ |a Wolbers, Thomas
|0 P:(DE-2719)2810583
|b 7
|u dzne
700 1 _ |a Kuehn, Esther
|0 P:(DE-2719)9001179
|b 8
|e Last author
|u dzne
773 _ _ |a 10.1523/JNEUROSCI.1692-22.2023
|g Vol. 43, no. 19, p. 3456 - 3476
|0 PERI:(DE-600)1475274-8
|n 19
|p 3456 - 3476
|t The journal of neuroscience
|v 43
|y 2023
|x 0270-6474
856 4 _ |u https://www.jneurosci.org/content/43/19/3456
856 4 _ |u https://pub.dzne.de/record/257999/files/DZNE-2023-00529.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/257999/files/DZNE-2023-00529.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:257999
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812088
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9000681
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9000645
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9001858
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810706
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810583
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9001179
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser
|l Parkinson Genetics
|x 0
920 1 _ |0 I:(DE-2719)5000006
|k AG Düzel 3
|l Clinical Neurophysiology and Memory
|x 1
920 1 _ |0 I:(DE-2719)1310010
|k AG Schreiber
|l Mixed Cerebral Pathologies and Cognitive Aging
|x 2
920 1 _ |0 I:(DE-2719)1310002
|k AG Wolbers
|l Aging, Cognition and Technology
|x 3
920 1 _ |0 I:(DE-2719)1340009
|k AG Speck
|l Linking imaging projects iNET
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210000-7
980 _ _ |a I:(DE-2719)5000006
980 _ _ |a I:(DE-2719)1310010
980 _ _ |a I:(DE-2719)1310002
980 _ _ |a I:(DE-2719)1340009
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21