001     258096
005     20231120155345.0
024 7 _ |a 10.1093/hmg/ddad025
|2 doi
024 7 _ |a pmid:36752535
|2 pmid
024 7 _ |a pmc:PMC10196677
|2 pmc
024 7 _ |a 0964-6906
|2 ISSN
024 7 _ |a 1460-2083
|2 ISSN
024 7 _ |a altmetric:142290338
|2 altmetric
037 _ _ |a DZNE-2023-00558
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Kumar, Manoj
|b 0
245 _ _ |a Acid ceramidase involved in pathogenic cascade leading to accumulation of α-synuclein in iPSC model of GBA1-associated Parkinson's disease.
260 _ _ |a Oxford
|c 2023
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1686040335_28874
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Bi-allelic mutations in GBA1, the gene that encodes β-glucocerebrosidase (GCase), cause Gaucher disease (GD), whereas mono-allelic mutations do not cause overt pathology. Yet mono- or bi-allelic GBA1 mutations are the highest known risk factor for Parkinson's disease (PD). GCase deficiency results in the accumulation of glucosylceramide (GluCer) and its deacylated metabolite glucosylsphingosine (GluSph). Brains from patients with neuronopathic GD have high levels of GluSph, and elevation of this lipid in GBA1-associated PD has been reported. To uncover the mechanisms involved in GBA1-associated PD, we used human induced pluripotent stem cell-derived dopaminergic (DA) neurons from patients harboring heterozygote mutations in GBA1 (GBA1/PD-DA neurons). We found that compared with gene-edited isogenic controls, GBA1/PD-DA neurons exhibit mammalian target of rapamycin complex 1 (mTORC1) hyperactivity, a block in autophagy, an increase in the levels of phosphorylated α-synuclein (129) and α-synuclein aggregation. These alterations were prevented by incubation with mTOR inhibitors. Inhibition of acid ceramidase, the lysosomal enzyme that deacylates GluCer to GluSph, prevented mTOR hyperactivity, restored autophagic flux and lowered α-synuclein levels, suggesting that GluSph was responsible for these alterations. Incubation of gene-edited wild type (WT) controls with exogenous GluSph recapitulated the mTOR/α-synuclein abnormalities of GBA1/PD neurons, and these phenotypic alterations were prevented when GluSph treatment was in the presence of mTOR inhibitors. We conclude that GluSph causes an aberrant activation of mTORC1, suppressing normal lysosomal functions, including the clearance of pathogenic α-synuclein species. Our results implicate acid ceramidase in the pathogenesis of GBA1-associated PD, suggesting that this enzyme is a potential therapeutic target for treating synucleinopathies caused by GCase deficiency.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a alpha-Synuclein
|2 NLM Chemicals
650 _ 7 |a MTOR Inhibitors
|2 NLM Chemicals
650 _ 7 |a Acid Ceramidase
|0 EC 3.5.1.23
|2 NLM Chemicals
650 _ 7 |a Glucosylceramidase
|0 EC 3.2.1.45
|2 NLM Chemicals
650 _ 7 |a TOR Serine-Threonine Kinases
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 7 |a Mechanistic Target of Rapamycin Complex 1
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Parkinson Disease: metabolism
|2 MeSH
650 _ 2 |a alpha-Synuclein: genetics
|2 MeSH
650 _ 2 |a alpha-Synuclein: metabolism
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a MTOR Inhibitors
|2 MeSH
650 _ 2 |a Acid Ceramidase: genetics
|2 MeSH
650 _ 2 |a Acid Ceramidase: metabolism
|2 MeSH
650 _ 2 |a Glucosylceramidase: genetics
|2 MeSH
650 _ 2 |a Glucosylceramidase: metabolism
|2 MeSH
650 _ 2 |a Gaucher Disease: metabolism
|2 MeSH
650 _ 2 |a Dopaminergic Neurons: metabolism
|2 MeSH
650 _ 2 |a TOR Serine-Threonine Kinases: genetics
|2 MeSH
650 _ 2 |a Mechanistic Target of Rapamycin Complex 1: genetics
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Lysosomes: metabolism
|2 MeSH
700 1 _ |a Srikanth, Manasa P
|b 1
700 1 _ |a Deleidi, Michela
|0 P:(DE-2719)2810385
|b 2
|u dzne
700 1 _ |a Hallett, Penelope J
|b 3
700 1 _ |a Isacson, Ole
|b 4
700 1 _ |a Feldman, Ricardo A
|0 0000-0001-6090-0439
|b 5
773 _ _ |a 10.1093/hmg/ddad025
|g Vol. 32, no. 11, p. 1888 - 1900
|0 PERI:(DE-600)1474816-2
|n 11
|p 1888 - 1900
|t Human molecular genetics
|v 32
|y 2023
|x 0964-6906
856 4 _ |u https://pub.dzne.de/record/258096/files/DZNE-2023-00558%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/258096/files/DZNE-2023-00558.pdf
856 4 _ |u https://pub.dzne.de/record/258096/files/DZNE-2023-00558.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:258096
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810385
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM MOL GENET : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 1 _ |0 I:(DE-2719)1210011
|k AG Deleidi
|l Mitochondria and Inflammation in Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210011
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21