Home > Publications Database > Modeling inducible neuropathologies of the retina with differential phenotypes in organoids. > print |
001 | 258099 | ||
005 | 20231120155345.0 | ||
024 | 7 | _ | |a 10.3389/fncel.2023.1106287 |2 doi |
024 | 7 | _ | |a pmid:37213216 |2 pmid |
024 | 7 | _ | |a pmc:PMC10196395 |2 pmc |
024 | 7 | _ | |a altmetric:148827750 |2 altmetric |
037 | _ | _ | |a DZNE-2023-00561 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Völkner, Manuela |0 P:(DE-2719)2810390 |b 0 |e First author |u dzne |
245 | _ | _ | |a Modeling inducible neuropathologies of the retina with differential phenotypes in organoids. |
260 | _ | _ | |a Lausanne |c 2023 |b Frontiers Research Foundation |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1686044577_28875 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Neurodegenerative diseases remain incompletely understood and therapies are needed. Stem cell-derived organoid models facilitate fundamental and translational medicine research. However, to which extent differential neuronal and glial pathologic processes can be reproduced in current systems is still unclear. Here, we tested 16 different chemical, physical, and cell functional manipulations in mouse retina organoids to further explore this. Some of the treatments induce differential phenotypes, indicating that organoids are competent to reproduce distinct pathologic processes. Notably, mouse retina organoids even reproduce a complex pathology phenotype with combined photoreceptor neurodegeneration and glial pathologies upon combined (not single) application of HBEGF and TNF, two factors previously associated with neurodegenerative diseases. Pharmacological inhibitors for MAPK signaling completely prevent photoreceptor and glial pathologies, while inhibitors for Rho/ROCK, NFkB, and CDK4 differentially affect them. In conclusion, mouse retina organoids facilitate reproduction of distinct and complex pathologies, mechanistic access, insights for further organoid optimization, and modeling of differential phenotypes for future applications in fundamental and translational medicine research. |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a glia |2 Other |
650 | _ | 7 | |a mouse embryonic stem (mES) cells |2 Other |
650 | _ | 7 | |a mouse organoid |2 Other |
650 | _ | 7 | |a neurodegeneration |2 Other |
650 | _ | 7 | |a neuron |2 Other |
650 | _ | 7 | |a pathology modeling |2 Other |
650 | _ | 7 | |a photoreceptor |2 Other |
650 | _ | 7 | |a retina |2 Other |
700 | 1 | _ | |a Wagner, Felix |0 P:(DE-2719)2811441 |b 1 |u dzne |
700 | 1 | _ | |a Kurth, Thomas |b 2 |
700 | 1 | _ | |a Sykes, Alex M |b 3 |
700 | 1 | _ | |a Del Toro Runzer, Claudia |0 P:(DE-2719)2812544 |b 4 |u dzne |
700 | 1 | _ | |a Ebner, Lynn J A |0 P:(DE-2719)2812120 |b 5 |u dzne |
700 | 1 | _ | |a Kavak, Cagri |0 P:(DE-2719)9001862 |b 6 |u dzne |
700 | 1 | _ | |a Alexaki, Vasileia Ismini |b 7 |
700 | 1 | _ | |a Cimalla, Peter |b 8 |
700 | 1 | _ | |a Mehner, Mirko |b 9 |
700 | 1 | _ | |a Koch, Edmund |b 10 |
700 | 1 | _ | |a Karl, Mike O |0 P:(DE-2719)2000041 |b 11 |e Last author |u dzne |
773 | _ | _ | |a 10.3389/fncel.2023.1106287 |g Vol. 17, p. 1106287 |0 PERI:(DE-600)2452963-1 |p 1106287 |t Frontiers in cellular neuroscience |v 17 |y 2023 |x 1662-5102 |
856 | 4 | _ | |u https://pub.dzne.de/record/258099/files/DZNE-2023-00561%20SUP.zip |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/258099/files/DZNE-2023-00561.pdf |
856 | 4 | _ | |u https://pub.dzne.de/record/258099/files/DZNE-2023-00561.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:pub.dzne.de:258099 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)2810390 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)2811441 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)2812544 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2812120 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)9001862 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 11 |6 P:(DE-2719)2000041 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-05-13T10:30:24Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-05-13T10:30:24Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-25 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-25 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2021-05-13T10:30:24Z |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT CELL NEUROSCI : 2022 |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-10-25 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b FRONT CELL NEUROSCI : 2022 |d 2023-10-25 |
920 | 1 | _ | |0 I:(DE-2719)1710004 |k AG Karl |l Retinal Regeneration and Degeneration |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1710004 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|