000258231 001__ 258231
000258231 005__ 20240112171528.0
000258231 0247_ $$2doi$$a10.1016/j.nicl.2023.103439
000258231 0247_ $$2pmid$$apmid:37253284
000258231 0247_ $$2pmc$$apmc:PMC10236463
000258231 0247_ $$2altmetric$$aaltmetric:149426358
000258231 037__ $$aDZNE-2023-00577
000258231 041__ $$aEnglish
000258231 082__ $$a610
000258231 1001_ $$aGöschel, Laura$$b0
000258231 245__ $$a7T amygdala and hippocampus subfields in volumetry-based associations with memory: A 3-year follow-up study of early Alzheimer's disease.
000258231 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2023
000258231 3367_ $$2DRIVER$$aarticle
000258231 3367_ $$2DataCite$$aOutput Types/Journal article
000258231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1686739508_11099
000258231 3367_ $$2BibTeX$$aARTICLE
000258231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000258231 3367_ $$00$$2EndNote$$aJournal Article
000258231 520__ $$aThe hippocampus is the most prominent single region of interest (ROI) for the diagnosis and prediction of Alzheimer's disease (AD). However, its suitability in the earliest stages of cognitive decline, i.e., subjective cognitive decline (SCD), remains uncertain which warrants the pursuit of alternative or complementary regions. The amygdala might be a promising candidate, given its implication in memory as well as other psychiatric disorders, e.g. depression and anxiety, which are prevalent in SCD. In this 7 tesla (T) magnetic resonance imaging (MRI) study, we aimed to compare the contribution of volumetric measurements of the hippocampus, the amygdala, and their respective subfields, for early diagnosis and prediction in an AD-related study population.Participants from a longitudinal study were grouped into SCD (n = 29), mild cognitive impairment (MCI, n = 23), AD (n = 22) and healthy control (HC, n = 31). All participants underwent 7T MRI at baseline and extensive neuropsychological testing at up to three visits (baseline n = 105, 1-year n = 78, 3-year n = 39). Analysis of covariance (ANCOVA) was used to assess group differences of baseline volumes of the amygdala and the hippocampus and their subfields. Linear mixed models were used to estimate the effects of baseline volumes on yearly changes of a z-scaled memory score. All models were adjusted to age, sex and education.Compared to the HC group, individuals with SCD showed smaller amygdala ROI volumes (range across subfields -11% to -1%), but not hippocampus ROI volumes (-2% to 1%) except for the hippocampus-amygdala-transition-area (-7%). However, cross-sectional associations between baseline memory and volumes were smaller for amygdala ROIs (std. ß [95% CI] ranging between 0.16 [0.08; 0.25] and 0.46 [0.31; 0.60]) than hippocampus ROIs (between 0.32 [0.19; 0.44] and 0.53 [0.40; 0.67]). Further, the association of baseline volumes with yearly memory change in the HC and SCD groups was similarly weak for amygdala ROIs and hippocampus ROIs. In the MCI group, volumes of amygdala ROIs were associated with a relevant yearly memory decline [95% CI] ranging between -0.12 [-0.24; 0.00] and -0.26 [-0.42; -0.09] for individuals with 20% smaller volumes than the HC group. However, effects were stronger for hippocampus ROIs with a corresponding yearly memory decline ranging between -0.21 [-0.35; -0.07] and -0.31 [-0.50; -0.13].Volumes of amygdala ROIs, as determined by 7T MRI, might contribute to objectively and non-invasively identify patients with SCD, and thus aid early diagnosis and treatment of individuals at risk to develop dementia due to AD, however associations with other psychiatric disorders should be evaluated in further studies. The amygdala's value in the prediction of longitudinal memory changes in the SCD group remains questionable. Primarily in patients with MCI, memory decline over 3 years appears to be more strongly associated with volumes of hippocampus ROIs than amygdala ROIs.
000258231 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000258231 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000258231 650_2 $$2MeSH$$aHumans
000258231 650_2 $$2MeSH$$aFollow-Up Studies
000258231 650_2 $$2MeSH$$aAlzheimer Disease: pathology
000258231 650_2 $$2MeSH$$aLongitudinal Studies
000258231 650_2 $$2MeSH$$aCross-Sectional Studies
000258231 650_2 $$2MeSH$$aCognitive Dysfunction: pathology
000258231 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000258231 650_2 $$2MeSH$$aAmygdala: diagnostic imaging
000258231 650_2 $$2MeSH$$aAmygdala: pathology
000258231 650_2 $$2MeSH$$aNeuropsychological Tests
000258231 650_2 $$2MeSH$$aMemory Disorders: diagnostic imaging
000258231 650_2 $$2MeSH$$aMemory Disorders: etiology
000258231 650_7 $$2Other$$aAlzheimer’s disease
000258231 650_7 $$2Other$$a7T MRI
000258231 650_7 $$2Other$$aAlzheimer’s disease
000258231 650_7 $$2Other$$aAmygdala
000258231 650_7 $$2Other$$aHippocampus
000258231 650_7 $$2Other$$aMemory
000258231 650_7 $$2Other$$aSCD
000258231 7001_ $$aKurz, Lea$$b1
000258231 7001_ $$0P:(DE-2719)9001684$$aDell Orco, Andrea$$b2$$udzne
000258231 7001_ $$0P:(DE-HGF)0$$aKöbe, Theresa$$b3
000258231 7001_ $$0P:(DE-2719)2812030$$aKörtvélyessy, Peter$$b4$$udzne
000258231 7001_ $$aFillmer, Ariane$$b5
000258231 7001_ $$aAydin, Semiha$$b6
000258231 7001_ $$aRiemann, Layla Tabea$$b7
000258231 7001_ $$aWang, Hui$$b8
000258231 7001_ $$aIttermann, Bernd$$b9
000258231 7001_ $$aGrittner, Ulrike$$b10
000258231 7001_ $$0P:(DE-2719)2812683$$aFlöel, Agnes$$b11$$eLast author$$udzne
000258231 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2023.103439$$gVol. 38, p. 103439 -$$p103439$$tNeuroImage: Clinical$$v38$$x2213-1582$$y2023
000258231 8564_ $$uhttps://pub.dzne.de/record/258231/files/DZNE-2023-00577%20SUP.docx
000258231 8564_ $$uhttps://pub.dzne.de/record/258231/files/DZNE-2023-00577.pdf$$yOpenAccess
000258231 8564_ $$uhttps://pub.dzne.de/record/258231/files/DZNE-2023-00577%20SUP.doc
000258231 8564_ $$uhttps://pub.dzne.de/record/258231/files/DZNE-2023-00577%20SUP.odt
000258231 8564_ $$uhttps://pub.dzne.de/record/258231/files/DZNE-2023-00577%20SUP.pdf
000258231 8564_ $$uhttps://pub.dzne.de/record/258231/files/DZNE-2023-00577.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000258231 909CO $$ooai:pub.dzne.de:258231$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000258231 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9001684$$aExternal Institute$$b2$$kExtern
000258231 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812030$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000258231 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812683$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000258231 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000258231 9141_ $$y2023
000258231 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
000258231 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000258231 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
000258231 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-15
000258231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000258231 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-15
000258231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE-CLIN : 2022$$d2023-08-24
000258231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000258231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000258231 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
000258231 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:49:23Z
000258231 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:49:23Z
000258231 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:49:23Z
000258231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000258231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000258231 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-24
000258231 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
000258231 9201_ $$0I:(DE-2719)5000081$$kAG Flöel$$lDementia Prevention – Mechanisms and Clinical Implementation$$x0
000258231 9201_ $$0I:(DE-2719)5000006$$kAG Düzel 3$$lClinical Neurophysiology and Memory$$x1
000258231 980__ $$ajournal
000258231 980__ $$aVDB
000258231 980__ $$aUNRESTRICTED
000258231 980__ $$aI:(DE-2719)5000081
000258231 980__ $$aI:(DE-2719)5000006
000258231 9801_ $$aFullTexts