000258258 001__ 258258
000258258 005__ 20231120155347.0
000258258 0247_ $$2doi$$a10.3390/diagnostics13101716
000258258 0247_ $$2pmid$$apmid:37238200
000258258 0247_ $$2pmc$$apmc:PMC10216908
000258258 0247_ $$2altmetric$$aaltmetric:149234806
000258258 037__ $$aDZNE-2023-00604
000258258 041__ $$aEnglish
000258258 082__ $$a610
000258258 1001_ $$aBendella, Zeynep$$b0
000258258 245__ $$aBrain Volume Changes after COVID-19 Compared to Healthy Controls by Artificial Intelligence-Based MRI Volumetry.
000258258 260__ $$aBasel$$bMDPI$$c2023
000258258 3367_ $$2DRIVER$$aarticle
000258258 3367_ $$2DataCite$$aOutput Types/Journal article
000258258 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692960626_28577
000258258 3367_ $$2BibTeX$$aARTICLE
000258258 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000258258 3367_ $$00$$2EndNote$$aJournal Article
000258258 520__ $$aCohort studies that quantify volumetric brain data among individuals with different levels of COVID-19 severity are presently limited. It is still uncertain whether there exists a potential correlation between disease severity and the effects of COVID-19 on brain integrity. Our objective was to assess the potential impact of COVID-19 on measured brain volume in patients with asymptomatic/mild and severe disease after recovery from infection, compared with healthy controls, using artificial intelligence (AI)-based MRI volumetry. A total of 155 participants were prospectively enrolled in this IRB-approved analysis of three cohorts with a mild course of COVID-19 (n = 51, MILD), a severe hospitalised course (n = 48, SEV), and healthy controls (n = 56, CTL) all undergoing a standardised MRI protocol of the brain. Automated AI-based determination of various brain volumes in mL and calculation of normalised percentiles of brain volume was performed with mdbrain software, using a 3D T1-weighted magnetisation-prepared rapid gradient echo (MPRAGE) sequence. The automatically measured brain volumes and percentiles were analysed for differences between groups. The estimated influence of COVID-19 and demographic/clinical variables on brain volume was determined using multivariate analysis. There were statistically significant differences in measured brain volumes and percentiles of various brain regions among groups, even after the exclusion of patients undergoing intensive care, with significant volume reductions in COVID-19 patients, which increased with disease severity (SEV > MILD > CTL) and mainly affected the supratentorial grey matter, frontal and parietal lobes, and right thalamus. Severe COVID-19 infection, in addition to established demographic parameters such as age and sex, was a significant predictor of brain volume loss upon multivariate analysis. In conclusion, neocortical brain degeneration was detected in patients who had recovered from SARS-CoV-2 infection compared to healthy controls, worsening with greater initial COVID-19 severity and mainly affecting the fronto-parietal brain and right thalamus, regardless of ICU treatment. This suggests a direct link between COVID-19 infection and subsequent brain atrophy, which may have major implications for clinical management and future cognitive rehabilitation strategies.
000258258 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000258258 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000258258 650_7 $$2Other$$aCOVID-19
000258258 650_7 $$2Other$$aSARS-CoV-2
000258258 650_7 $$2Other$$aartificial intelligence
000258258 650_7 $$2Other$$abrain atrophy
000258258 650_7 $$2Other$$amagnetic resonance imaging
000258258 7001_ $$0P:(DE-2719)2810687$$aWidmann, Catherine Nichols$$b1$$udzne
000258258 7001_ $$00000-0001-7692-7775$$aLayer, Julian Philipp$$b2
000258258 7001_ $$aLayer, Yonah Lucas$$b3
000258258 7001_ $$0P:(DE-2719)9001860$$aHaase, Robert$$b4$$udzne
000258258 7001_ $$aSauer, Malte$$b5
000258258 7001_ $$aBieler, Luzie$$b6
000258258 7001_ $$0P:(DE-2719)9001552$$aLehnen, Nils Christian$$b7$$udzne
000258258 7001_ $$0P:(DE-2719)9001705$$aPaech, Daniel$$b8$$udzne
000258258 7001_ $$0P:(DE-2719)2000008$$aHeneka, Michael T$$b9$$udzne
000258258 7001_ $$0P:(DE-2719)9001861$$aRadbruch, Alexander$$b10$$udzne
000258258 7001_ $$0P:(DE-2719)9001551$$aSchmeel, Frederic Carsten$$b11$$eLast author$$udzne
000258258 770__ $$aQuantitative Imaging in COVID-19
000258258 773__ $$0PERI:(DE-600)2662336-5$$a10.3390/diagnostics13101716$$gVol. 13, no. 10, p. 1716 -$$n10$$p1716$$tDiagnostics$$v13$$x2075-4418$$y2023
000258258 8564_ $$uhttps://www.mdpi.com/2075-4418/13/10/1716
000258258 8564_ $$uhttps://pub.dzne.de/record/258258/files/DZNE-2023-00604%20SUP.zip
000258258 8564_ $$uhttps://pub.dzne.de/record/258258/files/DZNE-2023-00604.pdf$$yOpenAccess
000258258 8564_ $$uhttps://pub.dzne.de/record/258258/files/DZNE-2023-00604.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000258258 909CO $$ooai:pub.dzne.de:258258$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000258258 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810687$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000258258 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001860$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000258258 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001552$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000258258 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001705$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000258258 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000008$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000258258 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001861$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000258258 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001551$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000258258 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000258258 9141_ $$y2023
000258258 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000258258 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000258258 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-08-18T10:46:39Z
000258258 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-10
000258258 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-10
000258258 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-10
000258258 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-10
000258258 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-07T16:30:38Z
000258258 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-07T16:30:38Z
000258258 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-07-07T16:30:38Z
000258258 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDIAGNOSTICS : 2022$$d2023-10-26
000258258 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000258258 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000258258 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000258258 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
000258258 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
000258258 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000258258 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000258258 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-26
000258258 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
000258258 9201_ $$0I:(DE-2719)5000075$$kAG Radbruch$$lClinical Neuroimaging$$x0
000258258 9201_ $$0I:(DE-2719)1011301$$kBiomarker$$lInterventional Trials and Biomarkers in Neurodegenerative Diseases$$x1
000258258 9201_ $$0I:(DE-2719)1011401$$kClinical Research Platform (CRP)$$lClinical Research Platform (CRP)$$x2
000258258 980__ $$ajournal
000258258 980__ $$aVDB
000258258 980__ $$aI:(DE-2719)5000075
000258258 980__ $$aI:(DE-2719)1011301
000258258 980__ $$aI:(DE-2719)1011401
000258258 980__ $$aUNRESTRICTED
000258258 9801_ $$aFullTexts