001     258258
005     20231120155347.0
024 7 _ |a 10.3390/diagnostics13101716
|2 doi
024 7 _ |a pmid:37238200
|2 pmid
024 7 _ |a pmc:PMC10216908
|2 pmc
024 7 _ |a altmetric:149234806
|2 altmetric
037 _ _ |a DZNE-2023-00604
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bendella, Zeynep
|b 0
245 _ _ |a Brain Volume Changes after COVID-19 Compared to Healthy Controls by Artificial Intelligence-Based MRI Volumetry.
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692960626_28577
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cohort studies that quantify volumetric brain data among individuals with different levels of COVID-19 severity are presently limited. It is still uncertain whether there exists a potential correlation between disease severity and the effects of COVID-19 on brain integrity. Our objective was to assess the potential impact of COVID-19 on measured brain volume in patients with asymptomatic/mild and severe disease after recovery from infection, compared with healthy controls, using artificial intelligence (AI)-based MRI volumetry. A total of 155 participants were prospectively enrolled in this IRB-approved analysis of three cohorts with a mild course of COVID-19 (n = 51, MILD), a severe hospitalised course (n = 48, SEV), and healthy controls (n = 56, CTL) all undergoing a standardised MRI protocol of the brain. Automated AI-based determination of various brain volumes in mL and calculation of normalised percentiles of brain volume was performed with mdbrain software, using a 3D T1-weighted magnetisation-prepared rapid gradient echo (MPRAGE) sequence. The automatically measured brain volumes and percentiles were analysed for differences between groups. The estimated influence of COVID-19 and demographic/clinical variables on brain volume was determined using multivariate analysis. There were statistically significant differences in measured brain volumes and percentiles of various brain regions among groups, even after the exclusion of patients undergoing intensive care, with significant volume reductions in COVID-19 patients, which increased with disease severity (SEV > MILD > CTL) and mainly affected the supratentorial grey matter, frontal and parietal lobes, and right thalamus. Severe COVID-19 infection, in addition to established demographic parameters such as age and sex, was a significant predictor of brain volume loss upon multivariate analysis. In conclusion, neocortical brain degeneration was detected in patients who had recovered from SARS-CoV-2 infection compared to healthy controls, worsening with greater initial COVID-19 severity and mainly affecting the fronto-parietal brain and right thalamus, regardless of ICU treatment. This suggests a direct link between COVID-19 infection and subsequent brain atrophy, which may have major implications for clinical management and future cognitive rehabilitation strategies.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a COVID-19
|2 Other
650 _ 7 |a SARS-CoV-2
|2 Other
650 _ 7 |a artificial intelligence
|2 Other
650 _ 7 |a brain atrophy
|2 Other
650 _ 7 |a magnetic resonance imaging
|2 Other
700 1 _ |a Widmann, Catherine Nichols
|0 P:(DE-2719)2810687
|b 1
|u dzne
700 1 _ |a Layer, Julian Philipp
|0 0000-0001-7692-7775
|b 2
700 1 _ |a Layer, Yonah Lucas
|b 3
700 1 _ |a Haase, Robert
|0 P:(DE-2719)9001860
|b 4
|u dzne
700 1 _ |a Sauer, Malte
|b 5
700 1 _ |a Bieler, Luzie
|b 6
700 1 _ |a Lehnen, Nils Christian
|0 P:(DE-2719)9001552
|b 7
|u dzne
700 1 _ |a Paech, Daniel
|0 P:(DE-2719)9001705
|b 8
|u dzne
700 1 _ |a Heneka, Michael T
|0 P:(DE-2719)2000008
|b 9
|u dzne
700 1 _ |a Radbruch, Alexander
|0 P:(DE-2719)9001861
|b 10
|u dzne
700 1 _ |a Schmeel, Frederic Carsten
|0 P:(DE-2719)9001551
|b 11
|e Last author
|u dzne
770 _ _ |a Quantitative Imaging in COVID-19
773 _ _ |a 10.3390/diagnostics13101716
|g Vol. 13, no. 10, p. 1716 -
|0 PERI:(DE-600)2662336-5
|n 10
|p 1716
|t Diagnostics
|v 13
|y 2023
|x 2075-4418
856 4 _ |u https://www.mdpi.com/2075-4418/13/10/1716
856 4 _ |u https://pub.dzne.de/record/258258/files/DZNE-2023-00604%20SUP.zip
856 4 _ |u https://pub.dzne.de/record/258258/files/DZNE-2023-00604.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/258258/files/DZNE-2023-00604.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:258258
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810687
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9001860
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)9001552
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9001705
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2000008
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9001861
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)9001551
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-08-18T10:46:39Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-07T16:30:38Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-07T16:30:38Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-07T16:30:38Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIAGNOSTICS : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-2719)5000075
|k AG Radbruch
|l Clinical Neuroimaging
|x 0
920 1 _ |0 I:(DE-2719)1011301
|k Biomarker
|l Interventional Trials and Biomarkers in Neurodegenerative Diseases
|x 1
920 1 _ |0 I:(DE-2719)1011401
|k Clinical Research Platform (CRP)
|l Clinical Research Platform (CRP)
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)5000075
980 _ _ |a I:(DE-2719)1011301
980 _ _ |a I:(DE-2719)1011401
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21