000258764 001__ 258764
000258764 005__ 20240403120701.0
000258764 0247_ $$2doi$$a10.1016/j.cub.2023.04.065
000258764 0247_ $$2pmid$$apmid:37220744
000258764 0247_ $$2ISSN$$a0960-9822
000258764 0247_ $$2ISSN$$a1879-0445
000258764 0247_ $$2altmetric$$aaltmetric:148815091
000258764 037__ $$aDZNE-2023-00672
000258764 041__ $$aEnglish
000258764 082__ $$a570
000258764 1001_ $$aYing, Johnson$$b0
000258764 245__ $$aGrid cell disruption in a mouse model of early Alzheimer's disease reflects reduced integration of self-motion cues.
000258764 260__ $$aLondon$$bCurrent Biology Ltd.$$c2023
000258764 3367_ $$2DRIVER$$aarticle
000258764 3367_ $$2DataCite$$aOutput Types/Journal article
000258764 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1688646599_17442
000258764 3367_ $$2BibTeX$$aARTICLE
000258764 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000258764 3367_ $$00$$2EndNote$$aJournal Article
000258764 520__ $$aConverging evidence from human and rodent studies suggests that disrupted grid cell coding in the medial entorhinal cortex (MEC) underlies path integration behavioral deficits during early Alzheimer's disease (AD). However, grid cell firing relies on both self-motion cues and environmental features, and it remains unclear whether disrupted grid coding can account for specific path integration deficits reported during early AD. Here, we report in the J20 transgenic amyloid beta (Aβ) mouse model of early AD that grid cells were spatially unstable toward the center of the arena, had qualitatively different spatial components that aligned parallel to the borders of the environment, and exhibited impaired integration of distance traveled via reduced theta phase precession. Our results suggest that disrupted early AD grid coding reflects reduced integration of self-motion cues but not environmental information via geometric boundaries, providing evidence that grid cell impairments underlie path integration deficits during early AD.
000258764 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000258764 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000258764 650_2 $$2MeSH$$aHumans
000258764 650_2 $$2MeSH$$aMice
000258764 650_2 $$2MeSH$$aAnimals
000258764 650_2 $$2MeSH$$aCues
000258764 650_2 $$2MeSH$$aAlzheimer Disease: genetics
000258764 650_2 $$2MeSH$$aAmyloid beta-Peptides
000258764 650_2 $$2MeSH$$aMice, Transgenic
000258764 650_2 $$2MeSH$$aDisease Models, Animal
000258764 650_2 $$2MeSH$$aEntorhinal Cortex
000258764 650_2 $$2MeSH$$aAction Potentials
000258764 650_7 $$2Other$$aAlzheimer’s disease
000258764 650_7 $$2Other$$aAlzheimer’s disease
000258764 650_7 $$2Other$$aAlzheimer’s disease
000258764 650_7 $$2Other$$aAlzheimer’s disease
000258764 650_7 $$2Other$$aFourier analysis
000258764 650_7 $$2Other$$aamyloid beta
000258764 650_7 $$2Other$$aenvironmental geometry
000258764 650_7 $$2Other$$agrid cells
000258764 650_7 $$2Other$$amedial entorhinal cortex
000258764 650_7 $$2Other$$apath integration
000258764 650_7 $$2Other$$aspatial navigation
000258764 650_7 $$2Other$$aspatial stability
000258764 650_7 $$2Other$$atheta phase precession
000258764 650_7 $$2NLM Chemicals$$aAmyloid beta-Peptides
000258764 7001_ $$0P:(DE-2719)2813728$$aReboreda, Antonio$$b1$$udzne
000258764 7001_ $$0P:(DE-2719)2811873$$aYoshida, Motoharu$$b2$$udzne
000258764 7001_ $$aBrandon, Mark P$$b3
000258764 773__ $$0PERI:(DE-600)2019214-9$$a10.1016/j.cub.2023.04.065$$gVol. 33, no. 12, p. 2425 - 2437.e5$$n12$$p2425 - 2437.e5$$tCurrent biology$$v33$$x0960-9822$$y2023
000258764 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S096098222300547X
000258764 8564_ $$uhttps://pub.dzne.de/record/258764/files/DZNE-2023-00672_Restricted.pdf
000258764 8564_ $$uhttps://pub.dzne.de/record/258764/files/DZNE-2023-00672_Restricted.pdf?subformat=pdfa$$xpdfa
000258764 909CO $$ooai:pub.dzne.de:258764$$pVDB
000258764 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2813728$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000258764 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811873$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000258764 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000258764 9141_ $$y2023
000258764 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-22
000258764 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
000258764 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
000258764 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
000258764 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCURR BIOL : 2022$$d2023-10-22
000258764 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000258764 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000258764 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
000258764 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
000258764 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000258764 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-22
000258764 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000258764 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-22
000258764 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-22
000258764 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCURR BIOL : 2022$$d2023-10-22
000258764 9201_ $$0I:(DE-2719)1310011$$kAG Yoshida$$lCognitive Neurophysiology$$x0
000258764 980__ $$ajournal
000258764 980__ $$aVDB
000258764 980__ $$aI:(DE-2719)1310011
000258764 980__ $$aUNRESTRICTED