001     258764
005     20240403120701.0
024 7 _ |a 10.1016/j.cub.2023.04.065
|2 doi
024 7 _ |a pmid:37220744
|2 pmid
024 7 _ |a 0960-9822
|2 ISSN
024 7 _ |a 1879-0445
|2 ISSN
024 7 _ |a altmetric:148815091
|2 altmetric
037 _ _ |a DZNE-2023-00672
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Ying, Johnson
|b 0
245 _ _ |a Grid cell disruption in a mouse model of early Alzheimer's disease reflects reduced integration of self-motion cues.
260 _ _ |a London
|c 2023
|b Current Biology Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1688646599_17442
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Converging evidence from human and rodent studies suggests that disrupted grid cell coding in the medial entorhinal cortex (MEC) underlies path integration behavioral deficits during early Alzheimer's disease (AD). However, grid cell firing relies on both self-motion cues and environmental features, and it remains unclear whether disrupted grid coding can account for specific path integration deficits reported during early AD. Here, we report in the J20 transgenic amyloid beta (Aβ) mouse model of early AD that grid cells were spatially unstable toward the center of the arena, had qualitatively different spatial components that aligned parallel to the borders of the environment, and exhibited impaired integration of distance traveled via reduced theta phase precession. Our results suggest that disrupted early AD grid coding reflects reduced integration of self-motion cues but not environmental information via geometric boundaries, providing evidence that grid cell impairments underlie path integration deficits during early AD.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Cues
|2 MeSH
650 _ 2 |a Alzheimer Disease: genetics
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Entorhinal Cortex
|2 MeSH
650 _ 2 |a Action Potentials
|2 MeSH
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Fourier analysis
|2 Other
650 _ 7 |a amyloid beta
|2 Other
650 _ 7 |a environmental geometry
|2 Other
650 _ 7 |a grid cells
|2 Other
650 _ 7 |a medial entorhinal cortex
|2 Other
650 _ 7 |a path integration
|2 Other
650 _ 7 |a spatial navigation
|2 Other
650 _ 7 |a spatial stability
|2 Other
650 _ 7 |a theta phase precession
|2 Other
650 _ 7 |a Amyloid beta-Peptides
|2 NLM Chemicals
700 1 _ |a Reboreda, Antonio
|0 P:(DE-2719)2813728
|b 1
|u dzne
700 1 _ |a Yoshida, Motoharu
|0 P:(DE-2719)2811873
|b 2
|u dzne
700 1 _ |a Brandon, Mark P
|b 3
773 _ _ |a 10.1016/j.cub.2023.04.065
|g Vol. 33, no. 12, p. 2425 - 2437.e5
|0 PERI:(DE-600)2019214-9
|n 12
|p 2425 - 2437.e5
|t Current biology
|v 33
|y 2023
|x 0960-9822
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S096098222300547X
856 4 _ |u https://pub.dzne.de/record/258764/files/DZNE-2023-00672_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/258764/files/DZNE-2023-00672_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:pub.dzne.de:258764
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2813728
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811873
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-22
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CURR BIOL : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CURR BIOL : 2022
|d 2023-10-22
920 1 _ |0 I:(DE-2719)1310011
|k AG Yoshida
|l Cognitive Neurophysiology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1310011
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21