001     258782
005     20240112171508.0
024 7 _ |a pmc:PMC10290658
|2 pmc
024 7 _ |a 10.1038/s42003-023-05039-y
|2 doi
024 7 _ |a pmid:37355752
|2 pmid
024 7 _ |a altmetric:150540154
|2 altmetric
037 _ _ |a DZNE-2023-00676
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Chen, Shu-Yu
|0 0009-0009-1762-0269
|b 0
245 _ _ |a Enzyme-substrate hybrid β-sheet controls geometry and water access to the γ-secretase active site.
260 _ _ |a London
|c 2023
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1688648508_17442
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a γ-Secretase is an aspartyl intramembrane protease that cleaves the amyloid precursor protein (APP) involved in Alzheimer's disease pathology and other transmembrane proteins. Substrate-bound structures reveal a stable hybrid β-sheet immediately following the substrate scissile bond consisting of β1 and β2 from the enzyme and β3 from the substrate. Molecular dynamics simulations and enhanced sampling simulations demonstrate that the hybrid β-sheet stability is strongly correlated with the formation of a stable cleavage-compatible active geometry and it also controls water access to the active site. The hybrid β-sheet is only stable for substrates with 3 or more C-terminal residues beyond the scissile bond. The simulation model allowed us to predict the effect of Pro and Phe mutations that weaken the formation of the hybrid β-sheet which were confirmed by experimental testing. Our study provides a direct explanation why γ-secretase preferentially cleaves APP in steps of 3 residues and how the hybrid β-sheet facilitates γ-secretase proteolysis.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Amyloid Precursor Protein Secretases: genetics
|2 MeSH
650 _ 2 |a Amyloid Precursor Protein Secretases: metabolism
|2 MeSH
650 _ 2 |a Catalytic Domain
|2 MeSH
650 _ 2 |a Protein Conformation, beta-Strand
|2 MeSH
650 _ 2 |a Amyloid beta-Protein Precursor: genetics
|2 MeSH
650 _ 2 |a Amyloid beta-Protein Precursor: metabolism
|2 MeSH
650 _ 2 |a Water Supply
|2 MeSH
650 _ 7 |a Amyloid Precursor Protein Secretases
|0 EC 3.4.-
|2 NLM Chemicals
650 _ 7 |a Amyloid beta-Protein Precursor
|2 NLM Chemicals
700 1 _ |a Feilen, Lukas Peter
|0 P:(DE-2719)2811962
|b 1
|u dzne
700 1 _ |a Chávez-Gutiérrez, Lucía
|0 0000-0002-8239-559X
|b 2
700 1 _ |a Steiner, Harald
|0 P:(DE-2719)2000023
|b 3
700 1 _ |a Zacharias, Martin
|0 0000-0001-5163-2663
|b 4
773 _ _ |a 10.1038/s42003-023-05039-y
|g Vol. 6, no. 1, p. 670
|0 PERI:(DE-600)2919698-X
|n 1
|p 670
|t Communications biology
|v 6
|y 2023
|x 2399-3642
856 4 _ |u https://www.nature.com/articles/s42003-023-05039-y
856 4 _ |u https://pub.dzne.de/record/258782/files/DZNE-2023-00676.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/258782/files/DZNE-2023-00676.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:258782
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811962
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2000023
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:13:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:13:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:13:06Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN BIOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN BIOL : 2022
|d 2023-10-27
920 1 _ |0 I:(DE-2719)1110000-1
|k AG Steiner
|l Biochemistry of γ-Secretase
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110000-1
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21