001     259000
005     20231004165910.0
024 7 _ |a pmc:PMC10333226
|2 pmc
024 7 _ |a 10.1038/s41536-023-00311-5
|2 doi
024 7 _ |a pmid:37429840
|2 pmid
024 7 _ |a altmetric:151192287
|2 altmetric
037 _ _ |a DZNE-2023-00713
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Siddiqui, Tohid
|0 P:(DE-2719)2812737
|b 0
|e First author
|u dzne
245 _ _ |a Nerve growth factor receptor (Ngfr) induces neurogenic plasticity by suppressing reactive astroglial Lcn2/Slc22a17 signaling in Alzheimer's disease.
260 _ _ |a [London]
|c 2023
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689238769_15886
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neurogenesis, crucial for brain resilience, is reduced in Alzheimer's disease (AD) that induces astroglial reactivity at the expense of the pro-neurogenic potential, and restoring neurogenesis could counteract neurodegenerative pathology. However, the molecular mechanisms promoting pro-neurogenic astroglial fate despite AD pathology are unknown. In this study, we used APP/PS1dE9 mouse model and induced Nerve growth factor receptor (Ngfr) expression in the hippocampus. Ngfr, which promotes neurogenic fate of astroglia during the amyloid pathology-induced neuroregeneration in zebrafish brain, stimulated proliferative and neurogenic outcomes. Histological analyses of the changes in proliferation and neurogenesis, single-cell transcriptomics, spatial proteomics, and functional knockdown studies showed that the induced expression of Ngfr reduced the reactive astrocyte marker Lipocalin-2 (Lcn2), which we found was sufficient to reduce neurogenesis in astroglia. Anti-neurogenic effects of Lcn2 was mediated by Slc22a17, blockage of which recapitulated the pro-neurogenicity by Ngfr. Long-term Ngfr expression reduced amyloid plaques and Tau phosphorylation. Postmortem human AD hippocampi and 3D human astroglial cultures showed elevated LCN2 levels correlate with reactive gliosis and reduced neurogenesis. Comparing transcriptional changes in mouse, zebrafish, and human AD brains for cell intrinsic differential gene expression and weighted gene co-expression networks revealed common altered downstream effectors of NGFR signaling, such as PFKP, which can enhance proliferation and neurogenesis in vitro when blocked. Our study suggests that the reactive non-neurogenic astroglia in AD can be coaxed to a pro-neurogenic fate and AD pathology can be alleviated with Ngfr. We suggest that enhancing pro-neurogenic astroglial fate may have therapeutic ramifications in AD.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
700 1 _ |a Cosacak, Mehmet Ilyas
|0 P:(DE-2719)2811286
|b 1
|u dzne
700 1 _ |a Popova, Stanislava
|0 P:(DE-2719)2812472
|b 2
|u dzne
700 1 _ |a Bhattarai, Prabesh
|0 P:(DE-2719)2811306
|b 3
|u dzne
700 1 _ |a Yilmaz, Elanur
|0 0000-0001-7045-5068
|b 4
700 1 _ |a Lee, Annie J
|b 5
700 1 _ |a Min, Yuhao
|0 0000-0001-8775-8743
|b 6
700 1 _ |a Wang, Xue
|b 7
700 1 _ |a Allen, Mariet
|b 8
700 1 _ |a İş, Özkan
|0 0000-0003-4070-6756
|b 9
700 1 _ |a Atasavum, Zeynep Tansu
|0 P:(DE-2719)9002487
|b 10
|u dzne
700 1 _ |a Rodriguez-Muela, Natalia
|0 P:(DE-2719)9000726
|b 11
|u dzne
700 1 _ |a Vardarajan, Badri N
|b 12
700 1 _ |a Flaherty, Delaney
|b 13
700 1 _ |a Teich, Andrew F
|b 14
700 1 _ |a Santa-Maria, Ismael
|b 15
700 1 _ |a Freudenberg, Uwe
|b 16
700 1 _ |a Werner, Carsten
|0 0000-0003-0189-3448
|b 17
700 1 _ |a Tosto, Giuseppe
|b 18
700 1 _ |a Mayeux, Richard
|b 19
700 1 _ |a Ertekin-Taner, Nilüfer
|b 20
700 1 _ |a Kizil, Caghan
|0 P:(DE-2719)2811030
|b 21
|e Last author
|u dzne
773 _ _ |a 10.1038/s41536-023-00311-5
|g Vol. 8, no. 1, p. 33
|0 PERI:(DE-600)2879698-6
|n 1
|p 33
|t npj regenerative medicine
|v 8
|y 2023
|x 2057-3995
856 4 _ |u https://www.nature.com/articles/s41536-023-00311-5
856 4 _ |u https://pub.dzne.de/record/259000/files/DZNE-2023-00713.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/259000/files/DZNE-2023-00713.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:259000
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812737
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811286
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812472
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811306
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9002487
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)9000726
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 21
|6 P:(DE-2719)2811030
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-10-13T14:37:51Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-03-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-31
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NPJ REGEN MED : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:11:18Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:11:18Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:11:18Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NPJ REGEN MED : 2022
|d 2023-08-22
920 1 _ |0 I:(DE-2719)1710007
|k AG Kizil
|l Mechanisms of Induced Plasticity of the Vertebrate Brain
|x 0
920 1 _ |0 I:(DE-2719)1713001
|k AG Rodriguez-Muela
|l Selective Neuronal Vulnerability in Neurodegenerative Diseases
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1710007
980 _ _ |a I:(DE-2719)1713001
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21