001     259006
005     20240112171451.0
024 7 _ |a pmc:PMC10334564
|2 pmc
024 7 _ |a 10.1186/s40478-023-01592-z
|2 doi
024 7 _ |a pmid:37434215
|2 pmid
024 7 _ |a altmetric:151530998
|2 altmetric
037 _ _ |a DZNE-2023-00715
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Riemenschneider, Henrick
|0 P:(DE-2719)2812261
|b 0
|e First author
|u dzne
245 _ _ |a Targeting the glycine-rich domain of TDP-43 with antibodies prevents its aggregation in vitro and reduces neurofilament levels in vivo.
260 _ _ |a London
|c 2023
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689236909_15885
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cytoplasmic aggregation and concomitant nuclear clearance of the RNA-binding protein TDP-43 are found in ~ 90% of cases of amyotrophic lateral sclerosis and ~ 45% of patients living with frontotemporal lobar degeneration, but no disease-modifying therapy is available. Antibody therapy targeting other aggregating proteins associated with neurodegenerative disorders has shown beneficial effects in animal models and clinical trials. The most effective epitopes for safe antibody therapy targeting TDP-43 are unknown. Here, we identified safe and effective epitopes in TDP-43 for active and potential future passive immunotherapy. We prescreened 15 peptide antigens covering all regions of TDP-43 to identify the most immunogenic epitopes and to raise novel monoclonal antibodies in wild-type mice. Most peptides induced a considerable antibody response and no antigen triggered obvious side effects. Thus, we immunized mice with rapidly progressing TDP-43 proteinopathy ('rNLS8' model) with the nine most immunogenic peptides in five pools prior to TDP-43ΔNLS transgene induction. Strikingly, combined administration of two N-terminal peptides induced genetic background-specific sudden lethality in several mice and was therefore discontinued. Despite a strong antibody response, no TDP-43 peptide prevented the rapid body weight loss or reduced phospho-TDP-43 levels as well as the profound astrogliosis and microgliosis in rNLS8 mice. However, immunization with a C-terminal peptide containing the disease-associated phospho-serines 409/410 significantly lowered serum neurofilament light chain levels, indicative of reduced neuroaxonal damage. Transcriptomic profiling showed a pronounced neuroinflammatory signature (IL-1β, TNF-α, NfκB) in rNLS8 mice and suggested modest benefits of immunization targeting the glycine-rich region. Several novel monoclonal antibodies targeting the glycine-rich domain potently reduced phase separation and aggregation of TDP-43 in vitro and prevented cellular uptake of preformed aggregates. Our unbiased screen suggests that targeting the RRM2 domain and the C-terminal region of TDP-43 by active or passive immunization may be beneficial in TDP-43 proteinopathies by inhibiting cardinal processes of disease progression.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Antibodies, Monoclonal
|2 MeSH
650 _ 2 |a Epitopes
|2 MeSH
650 _ 2 |a Immunization
|2 MeSH
650 _ 2 |a Intermediate Filaments
|2 MeSH
650 _ 2 |a NF-kappa B
|2 MeSH
650 _ 7 |a Antibodies, Monoclonal
|2 NLM Chemicals
650 _ 7 |a Aggregation
|2 Other
650 _ 7 |a Amyotrophic lateral sclerosis
|2 Other
650 _ 7 |a Frontotemporal dementia
|2 Other
650 _ 7 |a Immunotherapy
|2 Other
650 _ 7 |a Neurodegeneration
|2 Other
650 _ 7 |a Phase separation
|2 Other
650 _ 7 |a TDP-43
|2 Other
650 _ 7 |a Epitopes
|2 NLM Chemicals
650 _ 7 |a NF-kappa B
|2 NLM Chemicals
650 _ 7 |a TDP-43 protein, mouse
|2 NLM Chemicals
700 1 _ |a Simonetti, Francesca
|0 P:(DE-2719)9001596
|b 1
|e First author
|u dzne
700 1 _ |a Sheth, Udit
|b 2
700 1 _ |a Katona, Eszter
|0 P:(DE-2719)9001378
|b 3
|e First author
|u dzne
700 1 _ |a Roth, Stefan
|b 4
700 1 _ |a Hutten, Saskia
|b 5
700 1 _ |a Farny, Daniel
|0 P:(DE-2719)2812127
|b 6
|u dzne
700 1 _ |a Michaelsen, Meike
|0 P:(DE-2719)2811691
|b 7
|u dzne
700 1 _ |a Nuscher, Brigitte
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schmidt, Michael K
|b 9
700 1 _ |a Flatley, Andrew
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Schepers, Aloys
|b 11
700 1 _ |a Gruijs da Silva, Lara A
|b 12
700 1 _ |a Zhou, Qihui
|0 P:(DE-2719)2811347
|b 13
|u dzne
700 1 _ |a Klopstock, Thomas
|0 P:(DE-2719)2810704
|b 14
|u dzne
700 1 _ |a Liesz, Arthur
|b 15
700 1 _ |a Arzberger, Thomas
|0 P:(DE-2719)2811333
|b 16
|u dzne
700 1 _ |a Herms, Jochen
|0 P:(DE-2719)2810441
|b 17
|u dzne
700 1 _ |a Feederle, Regina
|0 P:(DE-2719)2812867
|b 18
|u dzne
700 1 _ |a Gendron, Tania F
|b 19
700 1 _ |a Dormann, Dorothee
|b 20
700 1 _ |a Edbauer, Dieter
|0 P:(DE-2719)2231621
|b 21
|e Last author
773 _ _ |a 10.1186/s40478-023-01592-z
|g Vol. 11, no. 1, p. 112
|0 PERI:(DE-600)2715589-4
|n 1
|p 112
|t Acta Neuropathologica Communications
|v 11
|y 2023
|x 2051-5960
856 4 _ |u https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-023-01592-z
856 4 _ |u https://pub.dzne.de/record/259006/files/DZNE-2023-00715.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/259006/files/DZNE-2023-00715.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:259006
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812261
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001596
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9001378
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812127
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2811691
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2811347
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2810704
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2811333
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)2810441
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 18
|6 P:(DE-2719)2812867
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 21
|6 P:(DE-2719)2231621
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-09
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:14Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:09:14Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL COM : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA NEUROPATHOL COM : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-2719)1110004
|k AG Edbauer
|l Cell Biology of Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)5000080
|k AG Zhou
|l Adaptive Immunity in Neurodegeneration
|x 1
920 1 _ |0 I:(DE-2719)1140013
|k Neuropathology / Brainbank
|l Neuropathology / Brainbank
|x 2
920 1 _ |0 I:(DE-2719)1110001
|k AG Herms
|l Translational Brain Research
|x 3
920 1 _ |0 I:(DE-2719)1140004
|k AG Feederle
|l Antibody production
|x 4
920 1 _ |0 I:(DE-2719)1111016
|k Clinical Dementia Research München ; AG Levin
|l Clinical Dementia Research München Levin
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110004
980 _ _ |a I:(DE-2719)5000080
980 _ _ |a I:(DE-2719)1140013
980 _ _ |a I:(DE-2719)1110001
980 _ _ |a I:(DE-2719)1140004
980 _ _ |a I:(DE-2719)1111016
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21