001     259129
005     20240611120549.0
024 7 _ |a 10.1016/j.molmet.2023.101748
|2 doi
024 7 _ |a pmid:37290673
|2 pmid
024 7 _ |a pmc:PMC10336528
|2 pmc
024 7 _ |a altmetric:150963895
|2 altmetric
037 _ _ |a DZNE-2023-00725
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Nieborak, Anna
|b 0
245 _ _ |a Depletion of pyruvate kinase (PK) activity causes glycolytic intermediate imbalances and reveals a PK-TXNIP regulatory axis.
260 _ _ |a Oxford [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718028154_5320
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cancer cells convert more glucose into lactate than healthy cells, what contributes to their growth advantage. Pyruvate kinase (PK) is a key rate limiting enzyme in this process, what makes it a promising potential therapeutic target. However, currently it is still unclear what consequences the inhibition of PK has on cellular processes. Here, we systematically investigate the consequences of PK depletion for gene expression, histone modifications and metabolism.Epigenetic, transcriptional and metabolic targets were analysed in different cellular and animal models with stable knockdown or knockout of PK.Depleting PK activity reduces the glycolytic flux and causes accumulation of glucose-6-phosphate (G6P). Such metabolic perturbation results in stimulation of the activity of a heterodimeric pair of transcription factors MondoA and MLX but not in a major reprogramming of the global H3K9ac and H3K4me3 histone modification landscape. The MondoA:MLX heterodimer upregulates expression of thioredoxin-interacting protein (TXNIP) - a tumour suppressor with multifaceted anticancer activity. This effect of TXNIP upregulation extends beyond immortalised cancer cell lines and is applicable to multiple cellular and animal models.Our work shows that actions of often pro-tumorigenic PK and anti-tumorigenic TXNIP are tightly linked via a glycolytic intermediate. We suggest that PK depletion stimulates the activity of MondoA:MLX transcription factor heterodimers and subsequently, increases cellular TXNIP levels. TXNIP-mediated inhibition of thioredoxin (TXN) can reduce the ability of cells to scavenge reactive oxygen species (ROS) leading to the oxidative damage of cellular structures including DNA. These findings highlight an important regulatory axis affecting tumour suppression mechanisms and provide an attractive opportunity for combination cancer therapies targeting glycolytic activity and ROS-generating pathways.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Arrestins
|2 Other
650 _ 7 |a Cancer
|2 Other
650 _ 7 |a Glycolysis
|2 Other
650 _ 7 |a Metabolic flux
|2 Other
650 _ 7 |a Pyruvate kinase
|2 Other
650 _ 7 |a ROS
|2 Other
650 _ 7 |a Thioredoxin-interacting protein
|2 Other
650 _ 7 |a Pyruvate Kinase
|0 EC 2.7.1.40
|2 NLM Chemicals
650 _ 7 |a Reactive Oxygen Species
|2 NLM Chemicals
650 _ 7 |a Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
|2 NLM Chemicals
650 _ 7 |a Thioredoxins
|0 52500-60-4
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Pyruvate Kinase: genetics
|2 MeSH
650 _ 2 |a Reactive Oxygen Species
|2 MeSH
650 _ 2 |a Basic Helix-Loop-Helix Leucine Zipper Transcription Factors: metabolism
|2 MeSH
650 _ 2 |a Neoplasms: genetics
|2 MeSH
650 _ 2 |a Neoplasms: metabolism
|2 MeSH
650 _ 2 |a Thioredoxins: chemistry
|2 MeSH
650 _ 2 |a Thioredoxins: metabolism
|2 MeSH
700 1 _ |a Lukauskas, Saulius
|b 1
700 1 _ |a Capellades, Jordi
|b 2
700 1 _ |a Heyn, Patricia
|b 3
700 1 _ |a Santos, Gabriela Silva
|b 4
700 1 _ |a Motzler, Karsten
|b 5
700 1 _ |a Zeigerer, Anja
|b 6
700 1 _ |a Bester, Romina
|b 7
700 1 _ |a Protzer, Ulrike
|b 8
700 1 _ |a Schelter, Florian
|b 9
700 1 _ |a Wagner, Mirko
|b 10
700 1 _ |a Carell, Thomas
|b 11
700 1 _ |a Hruscha, Alexander
|0 P:(DE-2719)2009882
|b 12
|u dzne
700 1 _ |a Schmid, Bettina
|0 P:(DE-2719)2241638
|b 13
|u dzne
700 1 _ |a Yanes, Oscar
|b 14
700 1 _ |a Schneider, Robert
|b 15
773 _ _ |a 10.1016/j.molmet.2023.101748
|g Vol. 74, p. 101748 -
|0 PERI:(DE-600)2708735-9
|p 101748
|t Molecular metabolism
|v 74
|y 2023
|x 2212-8778
856 4 _ |u https://pub.dzne.de/record/259129/files/DZNE-2023-00725.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/259129/files/DZNE-2023-00725.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:259129
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2009882
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2241638
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-15
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:49:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:49:42Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:49:42Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL METAB : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOL METAB : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-2719)1140002
|k AG Schmid
|l Fish Core Unit
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1140002
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21