001     259697
005     20231004134656.0
024 7 _ |a 10.1016/j.isci.2023.107342
|2 doi
024 7 _ |a pmid:37529101
|2 pmid
024 7 _ |a pmc:PMC10387610
|2 pmc
024 7 _ |a altmetric:151266399
|2 altmetric
037 _ _ |a DZNE-2023-00769
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Chen, Fushun
|b 0
245 _ _ |a sox1a:eGFP transgenic line and single-cell transcriptomics reveal the origin of zebrafish intraspinal serotonergic neurons.
260 _ _ |a St. Louis
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692948868_28576
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sox transcription factors are crucial for vertebrate nervous system development. In zebrafish embryo, sox1 genes are expressed in neural progenitor cells and neurons of ventral spinal cord. Our recent study revealed that the loss of sox1a and sox1b function results in a significant decline of V2 subtype neurons (V2s). Using single-cell RNA sequencing, we analyzed the transcriptome of sox1a lineage progenitors and neurons in the zebrafish spinal cord at four time points during embryonic development, employing the Tg(sox1a:eGFP) line. In addition to previously characterized sox1a-expressing neurons, we discovered the expression of sox1a in late-developing intraspinal serotonergic neurons (ISNs). Developmental trajectory analysis suggests that ISNs arise from lateral floor plate (LFP) progenitor cells. Pharmacological inhibition of the Notch signaling pathway revealed its role in negatively regulating LFP progenitor cell differentiation into ISNs. Our findings highlight the zebrafish LFP as a progenitor domain for ISNs, alongside known Kolmer-Agduhr (KA) and V3 interneurons.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Cell biology
|2 Other
650 _ 7 |a Neuroscience
|2 Other
650 _ 7 |a Omics
|2 Other
650 _ 7 |a Transcriptomics
|2 Other
700 1 _ |a Köhler, Melina
|b 1
700 1 _ |a Cucun, Gokhan
|b 2
700 1 _ |a Takamiya, Masanari
|b 3
700 1 _ |a Kizil, Caghan
|0 P:(DE-2719)2811030
|b 4
|u dzne
700 1 _ |a Cosacak, Mehmet Ilyas
|0 P:(DE-2719)2811286
|b 5
|u dzne
700 1 _ |a Rastegar, Sepand
|b 6
773 _ _ |a 10.1016/j.isci.2023.107342
|g Vol. 26, no. 8, p. 107342 -
|0 PERI:(DE-600)2927064-9
|n 8
|p 107342
|t iScience
|v 26
|y 2023
|x 2589-0042
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/259697/files/DZNE-2023-00769.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/259697/files/DZNE-2023-00769.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:259697
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811030
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811286
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-16
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ISCIENCE : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:51:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:51:15Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:51:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ISCIENCE : 2022
|d 2023-08-24
920 1 _ |0 I:(DE-2719)1710007
|k AG Kizil
|l Mechanisms of Induced Plasticity of the Vertebrate Brain
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1710007
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21