001     259763
005     20231004134658.0
024 7 _ |a 10.1016/j.bios.2023.115471
|2 doi
024 7 _ |a pmid:37379793
|2 pmid
024 7 _ |a 0956-5663
|2 ISSN
024 7 _ |a 1873-4235
|2 ISSN
024 7 _ |a altmetric:150567156
|2 altmetric
037 _ _ |a DZNE-2023-00797
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Emery, Brett Addison
|0 P:(DE-2719)9001361
|b 0
|e First author
|u dzne
245 _ _ |a High-resolution CMOS-based biosensor for assessing hippocampal circuit dynamics in experience-dependent plasticity.
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1694088487_1589
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Experiential richness creates tissue-level changes and synaptic plasticity as patterns emerge from rhythmic spatiotemporal activity of large interconnected neuronal assemblies. Despite numerous experimental and computational approaches at different scales, the precise impact of experience on network-wide computational dynamics remains inaccessible due to the lack of applicable large-scale recording methodology. We here demonstrate a large-scale multi-site biohybrid brain circuity on-CMOS-based biosensor with an unprecedented spatiotemporal resolution of 4096 microelectrodes, which allows simultaneous electrophysiological assessment across the entire hippocampal-cortical subnetworks from mice living in an enriched environment (ENR) and standard-housed (SD) conditions. Our platform, empowered with various computational analyses, reveals environmental enrichment's impacts on local and global spatiotemporal neural dynamics, firing synchrony, topological network complexity, and large-scale connectome. Our results delineate the distinct role of prior experience in enhancing multiplexed dimensional coding formed by neuronal ensembles and error tolerance and resilience to random failures compared to standard conditions. The scope and depth of these effects highlight the critical role of high-density, large-scale biosensors to provide a new understanding of the computational dynamics and information processing in multimodal physiological and experience-dependent plasticity conditions and their role in higher brain functions. Knowledge of these large-scale dynamics can inspire the development of biologically plausible computational models and computational artificial intelligence networks and expand the reach of neuromorphic brain-inspired computing into new applications.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a CMOS-MEAs
|2 Other
650 _ 7 |a Connectome
|2 Other
650 _ 7 |a Enriched environment
|2 Other
650 _ 7 |a Graph theory
|2 Other
650 _ 7 |a Large-scale biosensors
|2 Other
650 _ 7 |a Neural circuit
|2 Other
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Artificial Intelligence
|2 MeSH
650 _ 2 |a Biosensing Techniques
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Hippocampus
|2 MeSH
650 _ 2 |a Cerebral Cortex
|2 MeSH
700 1 _ |a Hu, Xin
|0 P:(DE-2719)2814182
|b 1
|u dzne
700 1 _ |a Khanzada, Shahrukh
|0 P:(DE-2719)9001867
|b 2
|u dzne
700 1 _ |a Kempermann, Gerd
|0 P:(DE-2719)2000011
|b 3
|u dzne
700 1 _ |a Amin, Hayder
|0 P:(DE-2719)2812628
|b 4
|e Last author
|u dzne
773 _ _ |a 10.1016/j.bios.2023.115471
|g Vol. 237, p. 115471 -
|0 PERI:(DE-600)1496379-6
|p 115471
|t Biosensors and bioelectronics
|v 237
|y 2023
|x 0956-5663
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/259763/files/DZNE-2023-00797.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/259763/files/DZNE-2023-00797.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:259763
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001361
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2814182
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001867
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2000011
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812628
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-24
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOSENS BIOELECTRON : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-23
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BIOSENS BIOELECTRON : 2022
|d 2023-08-23
920 1 _ |0 I:(DE-2719)1710010
|k AG Amin
|l Biohybrid Neuroelectronics (BIONICS)
|x 0
920 1 _ |0 I:(DE-2719)1710001
|k AG Kempermann
|l Adult Neurogenesis
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1710010
980 _ _ |a I:(DE-2719)1710001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21