Home > Publications Database > High-resolution CMOS-based biosensor for assessing hippocampal circuit dynamics in experience-dependent plasticity. > print |
001 | 259763 | ||
005 | 20231004134658.0 | ||
024 | 7 | _ | |a 10.1016/j.bios.2023.115471 |2 doi |
024 | 7 | _ | |a pmid:37379793 |2 pmid |
024 | 7 | _ | |a 0956-5663 |2 ISSN |
024 | 7 | _ | |a 1873-4235 |2 ISSN |
024 | 7 | _ | |a altmetric:150567156 |2 altmetric |
037 | _ | _ | |a DZNE-2023-00797 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Emery, Brett Addison |0 P:(DE-2719)9001361 |b 0 |e First author |u dzne |
245 | _ | _ | |a High-resolution CMOS-based biosensor for assessing hippocampal circuit dynamics in experience-dependent plasticity. |
260 | _ | _ | |a Amsterdam [u.a.] |c 2023 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1694088487_1589 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Experiential richness creates tissue-level changes and synaptic plasticity as patterns emerge from rhythmic spatiotemporal activity of large interconnected neuronal assemblies. Despite numerous experimental and computational approaches at different scales, the precise impact of experience on network-wide computational dynamics remains inaccessible due to the lack of applicable large-scale recording methodology. We here demonstrate a large-scale multi-site biohybrid brain circuity on-CMOS-based biosensor with an unprecedented spatiotemporal resolution of 4096 microelectrodes, which allows simultaneous electrophysiological assessment across the entire hippocampal-cortical subnetworks from mice living in an enriched environment (ENR) and standard-housed (SD) conditions. Our platform, empowered with various computational analyses, reveals environmental enrichment's impacts on local and global spatiotemporal neural dynamics, firing synchrony, topological network complexity, and large-scale connectome. Our results delineate the distinct role of prior experience in enhancing multiplexed dimensional coding formed by neuronal ensembles and error tolerance and resilience to random failures compared to standard conditions. The scope and depth of these effects highlight the critical role of high-density, large-scale biosensors to provide a new understanding of the computational dynamics and information processing in multimodal physiological and experience-dependent plasticity conditions and their role in higher brain functions. Knowledge of these large-scale dynamics can inspire the development of biologically plausible computational models and computational artificial intelligence networks and expand the reach of neuromorphic brain-inspired computing into new applications. |
536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 0 |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a CMOS-MEAs |2 Other |
650 | _ | 7 | |a Connectome |2 Other |
650 | _ | 7 | |a Enriched environment |2 Other |
650 | _ | 7 | |a Graph theory |2 Other |
650 | _ | 7 | |a Large-scale biosensors |2 Other |
650 | _ | 7 | |a Neural circuit |2 Other |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Artificial Intelligence |2 MeSH |
650 | _ | 2 | |a Biosensing Techniques |2 MeSH |
650 | _ | 2 | |a Neurons: physiology |2 MeSH |
650 | _ | 2 | |a Hippocampus |2 MeSH |
650 | _ | 2 | |a Cerebral Cortex |2 MeSH |
700 | 1 | _ | |a Hu, Xin |0 P:(DE-2719)2814182 |b 1 |u dzne |
700 | 1 | _ | |a Khanzada, Shahrukh |0 P:(DE-2719)9001867 |b 2 |u dzne |
700 | 1 | _ | |a Kempermann, Gerd |0 P:(DE-2719)2000011 |b 3 |u dzne |
700 | 1 | _ | |a Amin, Hayder |0 P:(DE-2719)2812628 |b 4 |e Last author |u dzne |
773 | _ | _ | |a 10.1016/j.bios.2023.115471 |g Vol. 237, p. 115471 - |0 PERI:(DE-600)1496379-6 |p 115471 |t Biosensors and bioelectronics |v 237 |y 2023 |x 0956-5663 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/259763/files/DZNE-2023-00797.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/259763/files/DZNE-2023-00797.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:259763 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)9001361 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)2814182 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)9001867 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)2000011 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)2812628 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 1 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-24 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-23 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-23 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BIOSENS BIOELECTRON : 2022 |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-23 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-23 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b BIOSENS BIOELECTRON : 2022 |d 2023-08-23 |
920 | 1 | _ | |0 I:(DE-2719)1710010 |k AG Amin |l Biohybrid Neuroelectronics (BIONICS) |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1710001 |k AG Kempermann |l Adult Neurogenesis |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1710010 |
980 | _ | _ | |a I:(DE-2719)1710001 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|