001     259914
005     20240112171411.0
024 7 _ |a pmc:PMC10427761
|2 pmc
024 7 _ |a 10.26508/lsa.202302018
|2 doi
024 7 _ |a pmid:37580082
|2 pmid
024 7 _ |a altmetric:152901369
|2 altmetric
037 _ _ |a DZNE-2023-00799
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Voelkl, Kerstin
|0 0000-0002-4182-0764
|b 0
245 _ _ |a Neuroprotective effects of hepatoma-derived growth factor in models of Huntington's disease.
260 _ _ |a Heidelberg
|c 2023
|b EMBO Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1694090121_1588
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Huntington's disease (HD) is a movement disorder caused by a mutation in the Huntingtin gene that leads to severe neurodegeneration. Molecular mechanisms of HD are not sufficiently understood, and no cure is currently available. Here, we demonstrate neuroprotective effects of hepatoma-derived growth factor (HDGF) in cellular and mouse HD models. We show that HD-vulnerable neurons in the striatum and cortex express lower levels of HDGF than resistant ones. Moreover, lack of endogenous HDGF exacerbated motor impairments and reduced the life span of R6/2 Huntington's disease mice. AAV-mediated delivery of HDGF into the brain reduced mutant Huntingtin inclusion load, but had no significant effect on motor behavior or life span. Interestingly, both nuclear and cytoplasmic versions of HDGF were efficient in rescuing mutant Huntingtin toxicity in cellular HD models. Moreover, extracellular application of recombinant HDGF improved viability of mutant Huntingtin-expressing primary neurons and reduced mutant Huntingtin aggregation in neural progenitor cells differentiated from human patient-derived induced pluripotent stem cells. Our findings provide new insights into the pathomechanisms of HD and demonstrate neuroprotective potential of HDGF in neurodegeneration.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Huntington Disease: genetics
|2 MeSH
650 _ 2 |a Huntington Disease: drug therapy
|2 MeSH
650 _ 2 |a Huntington Disease: metabolism
|2 MeSH
650 _ 2 |a Neuroprotective Agents: pharmacology
|2 MeSH
650 _ 2 |a Neuroprotective Agents: metabolism
|2 MeSH
650 _ 2 |a Neuroprotective Agents: therapeutic use
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Intercellular Signaling Peptides and Proteins: metabolism
|2 MeSH
650 _ 7 |a Neuroprotective Agents
|2 NLM Chemicals
650 _ 7 |a hepatoma-derived growth factor
|2 NLM Chemicals
650 _ 7 |a Intercellular Signaling Peptides and Proteins
|2 NLM Chemicals
700 1 _ |a Gutiérrez-Ángel, Sara
|b 1
700 1 _ |a Keeling, Sophie
|0 0000-0002-6413-2550
|b 2
700 1 _ |a Koyuncu, Seda
|b 3
700 1 _ |a da Silva Padilha, Miguel
|b 4
700 1 _ |a Feigenbutz, Dennis
|b 5
700 1 _ |a Arzberger, Thomas
|0 P:(DE-2719)2811333
|b 6
|u dzne
700 1 _ |a Vilchez, David
|0 0000-0002-0801-0743
|b 7
700 1 _ |a Klein, Rüdiger
|0 0000-0002-3109-0163
|b 8
700 1 _ |a Dudanova, Irina
|0 0000-0003-1052-8485
|b 9
773 _ _ |a 10.26508/lsa.202302018
|g Vol. 6, no. 11, p. e202302018 -
|0 PERI:(DE-600)2948687-7
|n 11
|p e202302018
|t Life science alliance
|v 6
|y 2023
|x 2575-1077
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/259914/files/DZNE-2023-00799.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/259914/files/DZNE-2023-00799.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:259914
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2811333
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-03-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-02-08T19:01:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-02-08T19:01:09Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-31
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-02-08T19:01:09Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LIFE SCI ALLIANCE : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-2719)1140013
|k Neuropathology / Brainbank
|l Neuropathology / Brainbank
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1140013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21