000259961 001__ 259961
000259961 005__ 20231004134700.0
000259961 0247_ $$2doi$$a10.1016/j.redox.2023.102817
000259961 0247_ $$2pmid$$apmid:37473700
000259961 0247_ $$2pmc$$apmc:PMC10404562
000259961 0247_ $$2altmetric$$aaltmetric:151772439
000259961 037__ $$aDZNE-2023-00814
000259961 041__ $$aEnglish
000259961 082__ $$a570
000259961 1001_ $$aPanagiotidou, Eleni$$b0
000259961 245__ $$aNeuron-specific proteasome activation exerts cell non-autonomous protection against amyloid-beta (Aβ) proteotoxicity in Caenorhabditis elegans.
000259961 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023
000259961 3367_ $$2DRIVER$$aarticle
000259961 3367_ $$2DataCite$$aOutput Types/Journal article
000259961 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1694700407_30856
000259961 3367_ $$2BibTeX$$aARTICLE
000259961 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000259961 3367_ $$00$$2EndNote$$aJournal Article
000259961 520__ $$aProteostasis reinforcement is a promising approach in the design of therapeutic interventions against proteinopathies, including Alzheimer's disease. Understanding how and which parts of the proteostasis network should be enhanced is crucial in developing efficient therapeutic strategies. The ability of specific tissues to induce proteostatic responses in distal ones (cell non-autonomous regulation of proteostasis) is attracting interest. Although the proteasome is a major protein degradation node, nothing is known on its cell non-autonomous regulation. We show that proteasome activation in the nervous system can enhance the proteasome activity in the muscle of Caenorhabditis elegans. Mechanistically, this communication depends on Small Clear Vesicles, with glutamate as one of the neurotransmitters required for the distal regulation. More importantly, we demonstrate that this cell non-autonomous proteasome activation is translated into efficient prevention of amyloid-beta (Αβ)-mediated proteotoxic effects in the muscle of C. elegans but notably not to resistance against oxidative stress. Our in vivo data establish a mechanistic link between neuronal proteasome reinforcement and decreased Aβ proteotoxicity in the muscle. The identified distal communication may have serious implications in the design of therapeutic strategies based on tissue-specific proteasome manipulation.
000259961 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000259961 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000259961 650_7 $$2Other$$aC. elegans
000259961 650_7 $$2Other$$aCell non-autonomous regulation
000259961 650_7 $$2Other$$aProteasome
000259961 650_7 $$2Other$$aProteinopathies
000259961 650_7 $$2Other$$aProteostasis
000259961 650_7 $$0EC 3.4.25.1$$2NLM Chemicals$$aProteasome Endopeptidase Complex
000259961 650_7 $$2NLM Chemicals$$aCaenorhabditis elegans Proteins
000259961 650_7 $$2NLM Chemicals$$aAmyloid beta-Peptides
000259961 650_2 $$2MeSH$$aAnimals
000259961 650_2 $$2MeSH$$aCaenorhabditis elegans: genetics
000259961 650_2 $$2MeSH$$aCaenorhabditis elegans: metabolism
000259961 650_2 $$2MeSH$$aProteasome Endopeptidase Complex: metabolism
000259961 650_2 $$2MeSH$$aCaenorhabditis elegans Proteins: genetics
000259961 650_2 $$2MeSH$$aCaenorhabditis elegans Proteins: metabolism
000259961 650_2 $$2MeSH$$aAmyloid beta-Peptides: toxicity
000259961 650_2 $$2MeSH$$aAmyloid beta-Peptides: metabolism
000259961 650_2 $$2MeSH$$aNeurons: metabolism
000259961 7001_ $$aGioran, Anna$$b1
000259961 7001_ $$0P:(DE-2719)2158358$$aBano, Daniele$$b2$$udzne
000259961 7001_ $$aChondrogianni, Niki$$b3
000259961 773__ $$0PERI:(DE-600)2701011-9$$a10.1016/j.redox.2023.102817$$gVol. 65, p. 102817 -$$p102817$$tRedox Biology$$v65$$x2213-2317$$y2023
000259961 8564_ $$uhttps://pub.dzne.de/record/259961/files/DZNE-2023-00814.pdf$$yOpenAccess
000259961 8564_ $$uhttps://pub.dzne.de/record/259961/files/DZNE-2023-00814.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000259961 909CO $$ooai:pub.dzne.de:259961$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000259961 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2158358$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000259961 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000259961 9141_ $$y2023
000259961 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000259961 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000259961 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREDOX BIOL : 2022$$d2023-08-22
000259961 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
000259961 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
000259961 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-22
000259961 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-06-05T07:04:07Z
000259961 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-06-05T07:04:07Z
000259961 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-06-05T07:04:07Z
000259961 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
000259961 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
000259961 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
000259961 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bREDOX BIOL : 2022$$d2023-08-22
000259961 9201_ $$0I:(DE-2719)1013003$$kAG Bano$$lAging and Neurodegeneration$$x0
000259961 980__ $$ajournal
000259961 980__ $$aVDB
000259961 980__ $$aUNRESTRICTED
000259961 980__ $$aI:(DE-2719)1013003
000259961 9801_ $$aFullTexts