000263628 001__ 263628
000263628 005__ 20230924001302.0
000263628 0247_ $$2doi$$a10.1101/2023.08.23.554119
000263628 0247_ $$2altmetric$$aaltmetric:153282692
000263628 037__ $$aDZNE-2023-00847
000263628 082__ $$a570
000263628 1001_ $$0P:(DE-2719)9001582$$aHasegawa, Masashi$$b0$$eFirst author$$udzne
000263628 245__ $$aNetwork state changes in sensory thalamus represent learned outcomes
000263628 260__ $$aCold Spring Harbor$$bCold Spring Harbor Laboratory, NY$$c2023
000263628 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1695284126_8401
000263628 3367_ $$2ORCID$$aWORKING_PAPER
000263628 3367_ $$028$$2EndNote$$aElectronic Article
000263628 3367_ $$2DRIVER$$apreprint
000263628 3367_ $$2BibTeX$$aARTICLE
000263628 3367_ $$2DataCite$$aOutput Types/Working Paper
000263628 520__ $$aThalamic brain areas play an important role in adaptive behaviors. Nevertheless, the population dynamics of thalamic relays during learning across sensory modalities remain mostly unknown. Using a cross-modal sensory reversal learning paradigm combined with deep brain two-photon calcium imaging of large populations of auditory thalamus (MGB) neurons, we identified that MGB neurons are biased towards reward predictors independent of modality. Additionally, functional classes of MGB neurons aligned with distinct task periods and behavioral outcomes, both dependent and independent of sensory modality. During non-sensory delay periods, MGB ensembles developed coherent neuronal representation as well as distinct co-activity network states reflecting predicted task outcome. These results demonstrate flexible cross-modal ensemble coding in auditory thalamus during adaptive learning and highlight its importance in brain-wide cross-modal computations during complex behavior.
000263628 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000263628 588__ $$aDataset connected to CrossRef
000263628 7001_ $$0P:(DE-2719)9001374$$aHuang, Ziyan$$b1$$udzne
000263628 7001_ $$0P:(DE-2719)9001219$$aGründemann, Jan$$b2$$eLast author
000263628 773__ $$0PERI:(DE-600)2766415-6$$a10.1101/2023.08.23.554119$$tbioRxiv beta$$y2023
000263628 8564_ $$uhttps://pub.dzne.de/record/263628/files/DZNE-2023-00847.pdf$$yOpenAccess
000263628 8564_ $$uhttps://pub.dzne.de/record/263628/files/DZNE-2023-00847.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000263628 909CO $$ooai:pub.dzne.de:263628$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000263628 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001582$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000263628 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001374$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000263628 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001219$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000263628 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000263628 9141_ $$y2023
000263628 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000263628 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000263628 9201_ $$0I:(DE-2719)5000069$$kAG Gründemann$$lNeural Circuit Computations$$x0
000263628 980__ $$apreprint
000263628 980__ $$aVDB
000263628 980__ $$aUNRESTRICTED
000263628 980__ $$aI:(DE-2719)5000069
000263628 9801_ $$aFullTexts