001     263628
005     20230924001302.0
024 7 _ |a 10.1101/2023.08.23.554119
|2 doi
024 7 _ |a altmetric:153282692
|2 altmetric
037 _ _ |a DZNE-2023-00847
082 _ _ |a 570
100 1 _ |a Hasegawa, Masashi
|0 P:(DE-2719)9001582
|b 0
|e First author
|u dzne
245 _ _ |a Network state changes in sensory thalamus represent learned outcomes
260 _ _ |a Cold Spring Harbor
|c 2023
|b Cold Spring Harbor Laboratory, NY
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1695284126_8401
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Thalamic brain areas play an important role in adaptive behaviors. Nevertheless, the population dynamics of thalamic relays during learning across sensory modalities remain mostly unknown. Using a cross-modal sensory reversal learning paradigm combined with deep brain two-photon calcium imaging of large populations of auditory thalamus (MGB) neurons, we identified that MGB neurons are biased towards reward predictors independent of modality. Additionally, functional classes of MGB neurons aligned with distinct task periods and behavioral outcomes, both dependent and independent of sensory modality. During non-sensory delay periods, MGB ensembles developed coherent neuronal representation as well as distinct co-activity network states reflecting predicted task outcome. These results demonstrate flexible cross-modal ensemble coding in auditory thalamus during adaptive learning and highlight its importance in brain-wide cross-modal computations during complex behavior.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huang, Ziyan
|0 P:(DE-2719)9001374
|b 1
|u dzne
700 1 _ |a Gründemann, Jan
|0 P:(DE-2719)9001219
|b 2
|e Last author
773 _ _ |a 10.1101/2023.08.23.554119
|0 PERI:(DE-600)2766415-6
|t bioRxiv beta
|y 2023
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/263628/files/DZNE-2023-00847.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/263628/files/DZNE-2023-00847.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:263628
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001582
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001374
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001219
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-2719)5000069
|k AG Gründemann
|l Neural Circuit Computations
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000069
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21