000265361 001__ 265361
000265361 005__ 20240611120549.0
000265361 0247_ $$2pmid$$apmid:37777512
000265361 0247_ $$2doi$$a10.1038/s41467-023-41803-8
000265361 0247_ $$2pmc$$apmc:PMC10543394
000265361 0247_ $$2altmetric$$aaltmetric:154785968
000265361 037__ $$aDZNE-2023-00985
000265361 082__ $$a500
000265361 1001_ $$00000-0002-2789-6068$$aMüller-Komorowska, Daniel$$b0
000265361 245__ $$aPhase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding
000265361 260__ $$a[London]$$bNature Publishing Group UK$$c2023
000265361 3367_ $$2DRIVER$$aarticle
000265361 3367_ $$2DataCite$$aOutput Types/Journal article
000265361 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718023447_5322
000265361 3367_ $$2BibTeX$$aARTICLE
000265361 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000265361 3367_ $$00$$2EndNote$$aJournal Article
000265361 520__ $$aNeural computation is often traced in terms of either rate- or phase-codes. However, most circuit operations will simultaneously affect information across both coding schemes. It remains unclear how phase and rate coded information is transmitted, in the face of continuous modification at consecutive processing stages. Here, we study this question in the entorhinal cortex (EC)- dentate gyrus (DG)- CA3 system using three distinct computational models. We demonstrate that DG feedback inhibition leverages EC phase information to improve rate-coding, a computation we term phase-to-rate recoding. Our results suggest that it i) supports the conservation of phase information within sparse rate-codes and ii) enhances the efficiency of plasticity in downstream CA3 via increased synchrony. Given the ubiquity of both phase-coding and feedback circuits, our results raise the question whether phase-to-rate recoding is a recurring computational motif, which supports the generation of sparse, synchronous population-rate-codes in areas beyond the DG.
000265361 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000265361 588__ $$aDataset connected to DataCite
000265361 650_2 $$2MeSH$$aDentate Gyrus: physiology
000265361 650_2 $$2MeSH$$aEntorhinal Cortex: physiology
000265361 650_2 $$2MeSH$$aModels, Neurological
000265361 650_2 $$2MeSH$$aHippocampus: physiology
000265361 7001_ $$aKuru, Baris$$b1
000265361 7001_ $$0P:(DE-2719)2000044$$aBeck, Heinz$$b2$$udzne
000265361 7001_ $$00000-0001-8508-1070$$aBraganza, Oliver$$b3
000265361 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-023-41803-8$$gVol. 14, no. 1, p. 6106$$n1$$p6106$$tNature Communications$$v14$$x2041-1723$$y2023
000265361 8564_ $$uhttps://pub.dzne.de/record/265361/files/DZNE-2023-00985.pdf$$yOpenAccess
000265361 8564_ $$uhttps://pub.dzne.de/record/265361/files/DZNE-2023-00985.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000265361 909CO $$ooai:pub.dzne.de:265361$$pdnbdelivery$$pdriver$$pVDB$$popenaire$$popen_access
000265361 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000044$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000265361 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000265361 9141_ $$y2023
000265361 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:09:09Z
000265361 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:09:09Z
000265361 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000265361 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000265361 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000265361 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2023-05-02T09:09:09Z
000265361 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000265361 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-29
000265361 9201_ $$0I:(DE-2719)6000011$$kBonn common$$lBonn common$$x0
000265361 980__ $$ajournal
000265361 980__ $$aVDB
000265361 980__ $$aI:(DE-2719)6000011
000265361 980__ $$aUNRESTRICTED
000265361 9801_ $$aFullTexts