000265790 001__ 265790
000265790 005__ 20231116132823.0
000265790 020__ $$a978-3-031-43894-3 (print)
000265790 020__ $$a978-3-031-43895-0 (electronic)
000265790 0247_ $$2doi$$a10.1007/978-3-031-43895-0_57
000265790 0247_ $$2ISSN$$a0302-9743
000265790 0247_ $$2ISSN$$a1611-3349
000265790 037__ $$aDZNE-2023-01039
000265790 1001_ $$aGreenspan, Hayit$$b0$$eEditor
000265790 1112_ $$a26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023$$cVancouver$$d2023-10-08 - 2023-10-12$$wCanada
000265790 245__ $$aFaithful Synthesis of Low-Dose Contrast-Enhanced Brain MRI Scans Using Noise-Preserving Conditional GANs
000265790 260__ $$aCham$$bSpringer Nature Switzerland$$c2023
000265790 29510 $$aMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 / Greenspan, Hayit (Editor) ; Cham : Springer Nature Switzerland, 2023, Chapter 57 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-031-43894-3=978-3-031-43895-0 ; doi:10.1007/978-3-031-43895-0
000265790 300__ $$a607 - 617
000265790 3367_ $$2ORCID$$aCONFERENCE_PAPER
000265790 3367_ $$033$$2EndNote$$aConference Paper
000265790 3367_ $$2BibTeX$$aINPROCEEDINGS
000265790 3367_ $$2DRIVER$$aconferenceObject
000265790 3367_ $$2DataCite$$aOutput Types/Conference Paper
000265790 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1700061239_31974
000265790 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000265790 4900_ $$aLecture Notes in Computer Science$$v14221
000265790 520__ $$aToday Gadolinium-based contrast agents (GBCA) are indispensable in Magnetic Resonance Imaging (MRI) for diagnosing various diseases. However, GBCAs are expensive and may accumulate in patients with potential side effects, thus dose-reduction is recommended. Still, it is unclear to which extent the GBCA dose can be reduced while preserving the diagnostic value – especially in pathological regions. To address this issue, we collected brain MRI scans at numerous non-standard GBCA dosages and developed a conditional GAN model for synthesizing corresponding images at fractional dose levels. Along with the adversarial loss, we advocate a novel content loss function based on the Wasserstein distance of locally paired patch statistics for the faithful preservation of noise. Our numerical experiments show that conditional GANs are suitable for generating images at different GBCA dose levels and can be used to augment datasets for virtual contrast models. Moreover, our model can be transferred to openly available datasets such as BraTS, where non-standard GBCA dosage images do not exist. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
000265790 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000265790 588__ $$aDataset connected to CrossRef Book Series, Journals: pub.dzne.de
000265790 7001_ $$00000-0002-5741-0399$$aMadabhushi, Anant$$b1$$eEditor
000265790 7001_ $$aMousavi, Parvin$$b2$$eEditor
000265790 7001_ $$00000-0001-8826-8025$$aSalcudean, Septimiu$$b3$$eEditor
000265790 7001_ $$00000-0002-5167-9856$$aDuncan, James$$b4$$eEditor
000265790 7001_ $$00000-0003-0059-3208$$aSyeda-Mahmood, Tanveer$$b5$$eEditor
000265790 7001_ $$00000-0001-6272-1100$$aTaylor, Russell$$b6$$eEditor
000265790 7001_ $$00000-0002-6100-2136$$aPinetz, Thomas$$b7
000265790 7001_ $$00000-0001-5167-4804$$aKobler, Erich$$b8
000265790 7001_ $$0P:(DE-HGF)0$$aHaase, Robert$$b9
000265790 7001_ $$0P:(DE-2719)9001745$$aDeike-Hofmann, Katerina$$b10$$udzne
000265790 7001_ $$0P:(DE-2719)9001861$$aRadbruch, Alexander$$b11
000265790 7001_ $$0P:(DE-2719)9002732$$aEffland, Alexander$$b12$$udzne
000265790 773__ $$a10.1007/978-3-031-43895-0_57
000265790 8564_ $$uhttps://pub.dzne.de/record/265790/files/DZNE-2023-01039_Restricted.pdf
000265790 8564_ $$uhttps://pub.dzne.de/record/265790/files/DZNE-2023-01039_Restricted.pdf?subformat=pdfa$$xpdfa
000265790 909CO $$ooai:pub.dzne.de:265790$$pVDB
000265790 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001745$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000265790 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001861$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000265790 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9002732$$aExternal Institute$$b12$$kExtern
000265790 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000265790 9141_ $$y2023
000265790 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-09-03$$wger
000265790 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-09-03
000265790 9201_ $$0I:(DE-2719)5000075$$kAG Radbruch$$lClinical Neuroimaging$$x0
000265790 980__ $$acontrib
000265790 980__ $$aVDB
000265790 980__ $$acontb
000265790 980__ $$aI:(DE-2719)5000075
000265790 980__ $$aUNRESTRICTED