001     265796
005     20240112171450.0
024 7 _ |a 10.1002/mds.29525
|2 doi
024 7 _ |a pmid:37449534
|2 pmid
024 7 _ |a 0885-3185
|2 ISSN
024 7 _ |a 1531-8257
|2 ISSN
024 7 _ |a altmetric:151560259
|2 altmetric
037 _ _ |a DZNE-2023-01040
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Grossmann, Dajana
|0 0000-0002-2005-4546
|b 0
245 _ _ |a Mitochondria-Endoplasmic Reticulum Contact Sites Dynamics and Calcium Homeostasis Are Differentially Disrupted in PINK1-PD or PRKN-PD Neurons.
260 _ _ |a New York, NY
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1700230864_11242
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a It is generally believed that the pathogenesis of PINK1/parkin-related Parkinson's disease (PD) is due to a disturbance in mitochondrial quality control. However, recent studies have found that PINK1 and Parkin play a significant role in mitochondrial calcium homeostasis and are involved in the regulation of mitochondria-endoplasmic reticulum contact sites (MERCSs).The aim of our study was to perform an in-depth analysis of the role of MERCSs and impaired calcium homeostasis in PINK1/Parkin-linked PD.In our study, we used induced pluripotent stem cell-derived dopaminergic neurons from patients with PD with loss-of-function mutations in PINK1 or PRKN. We employed a split-GFP-based contact site sensor in combination with the calcium-sensitive dye Rhod-2 AM and applied Airyscan live-cell super-resolution microscopy to determine how MERCSs are involved in the regulation of mitochondrial calcium homeostasis.Our results showed that thapsigargin-induced calcium stress leads to an increase of the abundance of narrow MERCSs in wild-type neurons. Intriguingly, calcium levels at the MERCSs remained stable, whereas the increased net calcium influx resulted in elevated mitochondrial calcium levels. However, PINK1-PD or PRKN-PD neurons showed an increased abundance of MERCSs at baseline, accompanied by an inability to further increase MERCSs upon thapsigargin-induced calcium stress. Consequently, calcium distribution at MERCSs and within mitochondria was disrupted.Our results demonstrated how the endoplasmic reticulum and mitochondria work together to cope with calcium stress in wild-type neurons. In addition, our results suggests that PRKN deficiency affects the dynamics and composition of MERCSs differently from PINK1 deficiency, resulting in differentially affected calcium homeostasis. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Parkinson Disease: pathology
|2 MeSH
650 _ 2 |a Calcium: metabolism
|2 MeSH
650 _ 2 |a Thapsigargin: metabolism
|2 MeSH
650 _ 2 |a Mitochondria: pathology
|2 MeSH
650 _ 2 |a Dopaminergic Neurons: metabolism
|2 MeSH
650 _ 2 |a Protein Kinases: genetics
|2 MeSH
650 _ 2 |a Ubiquitin-Protein Ligases: genetics
|2 MeSH
650 _ 2 |a Endoplasmic Reticulum: metabolism
|2 MeSH
650 _ 2 |a Homeostasis
|2 MeSH
650 _ 7 |a PTEN-induced putative kinase
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 7 |a PINK1
|2 Other
650 _ 7 |a Parkin
|2 Other
650 _ 7 |a Parkinson's disease
|2 Other
650 _ 7 |a calcium
|2 Other
650 _ 7 |a mitochondria-ER contact sites
|2 Other
650 _ 7 |a Calcium
|0 SY7Q814VUP
|2 NLM Chemicals
650 _ 7 |a Thapsigargin
|0 67526-95-8
|2 NLM Chemicals
650 _ 7 |a Protein Kinases
|0 EC 2.7.-
|2 NLM Chemicals
650 _ 7 |a Ubiquitin-Protein Ligases
|0 EC 2.3.2.27
|2 NLM Chemicals
650 _ 7 |a parkin protein
|0 EC 2.3.2.27
|2 NLM Chemicals
700 1 _ |a Malburg, Nina
|b 1
700 1 _ |a Glaß, Hannes
|0 0000-0003-3155-5300
|b 2
700 1 _ |a Weeren, Veronika
|b 3
700 1 _ |a Sondermann, Verena
|b 4
700 1 _ |a Pfeiffer, Julia F
|b 5
700 1 _ |a Petters, Janine
|b 6
700 1 _ |a Lukas, Jan
|0 0000-0002-8061-5798
|b 7
700 1 _ |a Seibler, Philip
|0 0000-0002-3496-7194
|b 8
700 1 _ |a Klein, Christine
|0 0000-0003-2102-3431
|b 9
700 1 _ |a Grünewald, Anne
|0 0000-0002-4179-2994
|b 10
700 1 _ |a Hermann, Andreas
|0 P:(DE-2719)2811732
|b 11
|e Last author
773 _ _ |a 10.1002/mds.29525
|g Vol. 38, no. 10, p. 1822 - 1836
|0 PERI:(DE-600)2041249-6
|n 10
|p 1822 - 1836
|t Movement disorders
|v 38
|y 2023
|x 0885-3185
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/265796/files/DZNE-2023-01040.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/265796/files/DZNE-2023-01040.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:265796
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2811732
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOVEMENT DISORD : 2022
|d 2023-10-24
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOVEMENT DISORD : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
920 1 _ |0 I:(DE-2719)1511100
|k AG Hermann
|l Translational Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1511100
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21