001     265797
005     20231119001753.0
024 7 _ |a 10.1002/mds.29527
|2 doi
024 7 _ |a pmid:37545102
|2 pmid
024 7 _ |a 0885-3185
|2 ISSN
024 7 _ |a 1531-8257
|2 ISSN
024 7 _ |a altmetric:152678775
|2 altmetric
037 _ _ |a DZNE-2023-01041
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wattjes, Mike P
|0 0000-0001-9298-2897
|b 0
245 _ _ |a Brain MRI in Progressive Supranuclear Palsy with Richardson's Syndrome and Variant Phenotypes.
260 _ _ |a New York, NY
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1700230806_11242
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Brain magnetic resonance imaging (MRI) is used to support the diagnosis of progressive supranuclear palsy (PSP). However, the value of visual descriptive, manual planimetric, automatic volumetric MRI markers and fully automatic categorization is unclear, particularly regarding PSP predominance types other than Richardson's syndrome (RS).To compare different visual reading strategies and automatic classification of T1-weighted MRI for detection of PSP in a typical clinical cohort including PSP-RS and (non-RS) variant PSP (vPSP) patients.Forty-one patients (21 RS, 20 vPSP) and 46 healthy controls were included. Three readers using three strategies performed MRI analysis: exclusively visual reading using descriptive signs (hummingbird, morning-glory, Mickey-Mouse), visual reading supported by manual planimetry measures, and visual reading supported by automatic volumetry. Fully automatic classification was performed using a pre-trained support vector machine (SVM) on the results of atlas-based volumetry.All tested methods achieved higher specificity than sensitivity. Limited sensitivity was driven to large extent by false negative vPSP cases. Support by automatic volumetry resulted in the highest accuracy (75.1% ± 3.5%) among the visual strategies, but performed not better than the midbrain area (75.9%), the best single planimetric measure. Automatic classification by SVM clearly outperformed all other methods (accuracy, 87.4%), representing the only method to provide clinically useful sensitivity also in vPSP (70.0%).Fully automatic classification of volumetric MRI measures using machine learning methods outperforms visual MRI analysis without and with planimetry or volumetry support, particularly regarding diagnosis of vPSP, suggesting the use in settings with a broad phenotypic PSP spectrum. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a hummingbird sign
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a magnetic resonance imaging
|2 Other
650 _ 7 |a progressive supranuclear palsy
|2 Other
650 _ 7 |a volumetry
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Supranuclear Palsy, Progressive: pathology
|2 MeSH
650 _ 2 |a Parkinson Disease: diagnosis
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Mesencephalon: pathology
|2 MeSH
700 1 _ |a Huppertz, Hans-Jürgen
|0 0000-0003-3856-9094
|b 1
700 1 _ |a Mahmoudi, Nima
|0 0000-0002-2053-9623
|b 2
700 1 _ |a Stöcklein, Sophia
|b 3
700 1 _ |a Rogozinski, Sophia
|b 4
700 1 _ |a Wegner, Florian
|b 5
700 1 _ |a Klietz, Martin
|0 0000-0002-3054-9905
|b 6
700 1 _ |a Apostolova, Ivayla
|0 0000-0003-0290-7186
|b 7
700 1 _ |a Levin, Johannes
|0 P:(DE-2719)2811659
|b 8
|u dzne
700 1 _ |a Katzdobler, Sabrina
|0 P:(DE-2719)9001160
|b 9
700 1 _ |a Buhmann, Carsten
|b 10
700 1 _ |a Quattrone, Andrea
|0 P:(DE-2719)9002627
|b 11
|u dzne
700 1 _ |a Berding, Georg
|0 0000-0001-5592-8373
|b 12
700 1 _ |a Brendel, Matthias
|0 P:(DE-2719)9001539
|b 13
700 1 _ |a Barthel, Henryk
|b 14
700 1 _ |a Sabri, Osama
|0 P:(DE-2719)2814810
|b 15
|u dzne
700 1 _ |a Höglinger, Günter
|0 P:(DE-2719)2811373
|b 16
700 1 _ |a Buchert, Ralph
|0 0000-0002-0945-0724
|b 17
700 1 _ |a Initiative, Alzheimer's Disease Neuroimaging
|b 18
|e Collaboration Author
773 _ _ |a 10.1002/mds.29527
|g Vol. 38, no. 10, p. 1891 - 1900
|0 PERI:(DE-600)2041249-6
|n 10
|p 1891 - 1900
|t Movement disorders
|v 38
|y 2023
|x 0885-3185
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/265797/files/DZNE-2023-01041.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/265797/files/DZNE-2023-01041.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:265797
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2811659
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)9001160
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-2719)9002627
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)9001539
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-2719)2814810
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2811373
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOVEMENT DISORD : 2022
|d 2023-10-24
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOVEMENT DISORD : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
920 1 _ |0 I:(DE-2719)1111015
|k Clinical Research (Munich)
|l Clinical Research (Munich)
|x 0
920 1 _ |0 I:(DE-2719)1111016
|k AG Levin
|l Clinical Neurodegeneration
|x 1
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass
|l Molecular Neurodegeneration
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1111015
980 _ _ |a I:(DE-2719)1111016
980 _ _ |a I:(DE-2719)1110007
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21