| Home > Publications Database > Brain MRI in Progressive Supranuclear Palsy with Richardson's Syndrome and Variant Phenotypes. > print |
| 001 | 265797 | ||
| 005 | 20231119001753.0 | ||
| 024 | 7 | _ | |a 10.1002/mds.29527 |2 doi |
| 024 | 7 | _ | |a pmid:37545102 |2 pmid |
| 024 | 7 | _ | |a 0885-3185 |2 ISSN |
| 024 | 7 | _ | |a 1531-8257 |2 ISSN |
| 024 | 7 | _ | |a altmetric:152678775 |2 altmetric |
| 037 | _ | _ | |a DZNE-2023-01041 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Wattjes, Mike P |0 0000-0001-9298-2897 |b 0 |
| 245 | _ | _ | |a Brain MRI in Progressive Supranuclear Palsy with Richardson's Syndrome and Variant Phenotypes. |
| 260 | _ | _ | |a New York, NY |c 2023 |b Wiley |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1700230806_11242 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Brain magnetic resonance imaging (MRI) is used to support the diagnosis of progressive supranuclear palsy (PSP). However, the value of visual descriptive, manual planimetric, automatic volumetric MRI markers and fully automatic categorization is unclear, particularly regarding PSP predominance types other than Richardson's syndrome (RS).To compare different visual reading strategies and automatic classification of T1-weighted MRI for detection of PSP in a typical clinical cohort including PSP-RS and (non-RS) variant PSP (vPSP) patients.Forty-one patients (21 RS, 20 vPSP) and 46 healthy controls were included. Three readers using three strategies performed MRI analysis: exclusively visual reading using descriptive signs (hummingbird, morning-glory, Mickey-Mouse), visual reading supported by manual planimetry measures, and visual reading supported by automatic volumetry. Fully automatic classification was performed using a pre-trained support vector machine (SVM) on the results of atlas-based volumetry.All tested methods achieved higher specificity than sensitivity. Limited sensitivity was driven to large extent by false negative vPSP cases. Support by automatic volumetry resulted in the highest accuracy (75.1% ± 3.5%) among the visual strategies, but performed not better than the midbrain area (75.9%), the best single planimetric measure. Automatic classification by SVM clearly outperformed all other methods (accuracy, 87.4%), representing the only method to provide clinically useful sensitivity also in vPSP (70.0%).Fully automatic classification of volumetric MRI measures using machine learning methods outperforms visual MRI analysis without and with planimetry or volumetry support, particularly regarding diagnosis of vPSP, suggesting the use in settings with a broad phenotypic PSP spectrum. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. |
| 536 | _ | _ | |a 353 - Clinical and Health Care Research (POF4-353) |0 G:(DE-HGF)POF4-353 |c POF4-353 |f POF IV |x 0 |
| 536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a hummingbird sign |2 Other |
| 650 | _ | 7 | |a machine learning |2 Other |
| 650 | _ | 7 | |a magnetic resonance imaging |2 Other |
| 650 | _ | 7 | |a progressive supranuclear palsy |2 Other |
| 650 | _ | 7 | |a volumetry |2 Other |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Animals |2 MeSH |
| 650 | _ | 2 | |a Mice |2 MeSH |
| 650 | _ | 2 | |a Supranuclear Palsy, Progressive: pathology |2 MeSH |
| 650 | _ | 2 | |a Parkinson Disease: diagnosis |2 MeSH |
| 650 | _ | 2 | |a Brain: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Brain: pathology |2 MeSH |
| 650 | _ | 2 | |a Magnetic Resonance Imaging: methods |2 MeSH |
| 650 | _ | 2 | |a Mesencephalon: pathology |2 MeSH |
| 700 | 1 | _ | |a Huppertz, Hans-Jürgen |0 0000-0003-3856-9094 |b 1 |
| 700 | 1 | _ | |a Mahmoudi, Nima |0 0000-0002-2053-9623 |b 2 |
| 700 | 1 | _ | |a Stöcklein, Sophia |b 3 |
| 700 | 1 | _ | |a Rogozinski, Sophia |b 4 |
| 700 | 1 | _ | |a Wegner, Florian |b 5 |
| 700 | 1 | _ | |a Klietz, Martin |0 0000-0002-3054-9905 |b 6 |
| 700 | 1 | _ | |a Apostolova, Ivayla |0 0000-0003-0290-7186 |b 7 |
| 700 | 1 | _ | |a Levin, Johannes |0 P:(DE-2719)2811659 |b 8 |u dzne |
| 700 | 1 | _ | |a Katzdobler, Sabrina |0 P:(DE-2719)9001160 |b 9 |
| 700 | 1 | _ | |a Buhmann, Carsten |b 10 |
| 700 | 1 | _ | |a Quattrone, Andrea |0 P:(DE-2719)9002627 |b 11 |u dzne |
| 700 | 1 | _ | |a Berding, Georg |0 0000-0001-5592-8373 |b 12 |
| 700 | 1 | _ | |a Brendel, Matthias |0 P:(DE-2719)9001539 |b 13 |
| 700 | 1 | _ | |a Barthel, Henryk |b 14 |
| 700 | 1 | _ | |a Sabri, Osama |0 P:(DE-2719)2814810 |b 15 |u dzne |
| 700 | 1 | _ | |a Höglinger, Günter |0 P:(DE-2719)2811373 |b 16 |
| 700 | 1 | _ | |a Buchert, Ralph |0 0000-0002-0945-0724 |b 17 |
| 700 | 1 | _ | |a Initiative, Alzheimer's Disease Neuroimaging |b 18 |e Collaboration Author |
| 773 | _ | _ | |a 10.1002/mds.29527 |g Vol. 38, no. 10, p. 1891 - 1900 |0 PERI:(DE-600)2041249-6 |n 10 |p 1891 - 1900 |t Movement disorders |v 38 |y 2023 |x 0885-3185 |
| 856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/265797/files/DZNE-2023-01041.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/265797/files/DZNE-2023-01041.pdf?subformat=pdfa |
| 909 | C | O | |o oai:pub.dzne.de:265797 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-2719)2811659 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 9 |6 P:(DE-2719)9001160 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-2719)9002627 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 13 |6 P:(DE-2719)9001539 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 15 |6 P:(DE-2719)2814810 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 16 |6 P:(DE-2719)2811373 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-353 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 1 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-24 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MOVEMENT DISORD : 2022 |d 2023-10-24 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-24 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-24 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MOVEMENT DISORD : 2022 |d 2023-10-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-24 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-24 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
| 920 | 1 | _ | |0 I:(DE-2719)1111015 |k Clinical Research (Munich) |l Clinical Research (Munich) |x 0 |
| 920 | 1 | _ | |0 I:(DE-2719)1111016 |k AG Levin |l Clinical Neurodegeneration |x 1 |
| 920 | 1 | _ | |0 I:(DE-2719)1110007 |k AG Haass |l Molecular Neurodegeneration |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)1111015 |
| 980 | _ | _ | |a I:(DE-2719)1111016 |
| 980 | _ | _ | |a I:(DE-2719)1110007 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|