000265942 001__ 265942
000265942 005__ 20240403131750.0
000265942 0247_ $$2pmc$$apmc:PMC10648717
000265942 0247_ $$2doi$$a10.3390/cells12212525
000265942 0247_ $$2pmid$$apmid:37947603
000265942 037__ $$aDZNE-2023-01065
000265942 041__ $$aEnglish
000265942 082__ $$a570
000265942 1001_ $$aPinky, Priyanka D$$b0
000265942 245__ $$aPrenatal Cannabinoid Exposure Elicits Memory Deficits Associated with Reduced PSA-NCAM Expression, Altered Glutamatergic Signaling, and Adaptations in Hippocampal Synaptic Plasticity.
000265942 260__ $$aBasel$$bMDPI$$c2023
000265942 3367_ $$2DRIVER$$aarticle
000265942 3367_ $$2DataCite$$aOutput Types/Journal article
000265942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1700487309_2200
000265942 3367_ $$2BibTeX$$aARTICLE
000265942 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000265942 3367_ $$00$$2EndNote$$aJournal Article
000265942 520__ $$aCannabis is now one of the most commonly used illicit substances among pregnant women. This is particularly concerning since developmental exposure to cannabinoids can elicit enduring neurofunctional and cognitive alterations. This study investigates the mechanisms of learning and memory deficits resulting from prenatal cannabinoid exposure (PCE) in adolescent offspring. The synthetic cannabinoid agonist WIN55,212-2 was administered to pregnant rats, and a series of behavioral, electrophysiological, and immunochemical studies were performed to identify potential mechanisms of memory deficits in the adolescent offspring. Hippocampal-dependent memory deficits in adolescent PCE animals were associated with decreased long-term potentiation (LTP) and enhanced long-term depression (LTD) at hippocampal Schaffer collateral-CA1 synapses, as well as an imbalance between GluN2A- and GluN2B-mediated signaling. Moreover, PCE reduced gene and protein expression of neural cell adhesion molecule (NCAM) and polysialylated-NCAM (PSA-NCAM), which are critical for GluN2A and GluN2B signaling balance. Administration of exogenous PSA abrogated the LTP deficits observed in PCE animals, suggesting PSA mediated alterations in GluN2A- and GluN2B- signaling pathways may be responsible for the impaired hippocampal synaptic plasticity resulting from PCE. These findings enhance our current understanding of how PCE affects memory and how this process can be manipulated for future therapeutic purposes.
000265942 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000265942 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000265942 650_7 $$2Other$$aadolescence
000265942 650_7 $$2Other$$abehavior
000265942 650_7 $$2Other$$acannabinoid
000265942 650_7 $$2Other$$adevelopmental
000265942 650_7 $$2Other$$aglutamate
000265942 650_7 $$2Other$$amarijuana
000265942 650_7 $$2Other$$amemory
000265942 650_7 $$2Other$$aprenatal
000265942 650_7 $$2Other$$asynaptic plasticity
000265942 650_7 $$2NLM Chemicals$$apolysialyl neural cell adhesion molecule
000265942 650_7 $$2NLM Chemicals$$aNeural Cell Adhesion Molecules
000265942 650_7 $$2NLM Chemicals$$aCannabinoids
000265942 650_2 $$2MeSH$$aHumans
000265942 650_2 $$2MeSH$$aRats
000265942 650_2 $$2MeSH$$aFemale
000265942 650_2 $$2MeSH$$aAnimals
000265942 650_2 $$2MeSH$$aPregnancy
000265942 650_2 $$2MeSH$$aAdolescent
000265942 650_2 $$2MeSH$$aNeural Cell Adhesion Molecules: metabolism
000265942 650_2 $$2MeSH$$aCannabinoids: pharmacology
000265942 650_2 $$2MeSH$$aCannabinoids: metabolism
000265942 650_2 $$2MeSH$$aNeuronal Plasticity: physiology
000265942 650_2 $$2MeSH$$aHippocampus: metabolism
000265942 650_2 $$2MeSH$$aMemory Disorders: metabolism
000265942 7001_ $$00000-0002-1090-0286$$aBloemer, Jenna$$b1
000265942 7001_ $$aSmith, Warren D$$b2
000265942 7001_ $$aDu, Yifeng$$b3
000265942 7001_ $$aHeslin, Ryan T$$b4
000265942 7001_ $$aSetti, Sharay E$$b5
000265942 7001_ $$aPfitzer, Jeremiah C$$b6
000265942 7001_ $$00000-0002-1992-4786$$aChowdhury, Kawsar$$b7
000265942 7001_ $$aHong, Hao$$b8
000265942 7001_ $$aBhattacharya, Subhrajit$$b9
000265942 7001_ $$00000-0001-8986-3440$$aDhanasekaran, Muralikrishnan$$b10
000265942 7001_ $$0P:(DE-2719)2810577$$aDityatev, Alexander$$b11
000265942 7001_ $$00000-0002-8465-5594$$aReed, Miranda N$$b12
000265942 7001_ $$aSuppiramaniam, Vishnu$$b13
000265942 770__ $$aGlutamatergic Transmission in Brain Development and Disease
000265942 773__ $$0PERI:(DE-600)2661518-6$$a10.3390/cells12212525$$gVol. 12, no. 21, p. 2525 -$$n21$$p2525$$tCells$$v12$$x2073-4409$$y2023
000265942 8564_ $$uhttps://pub.dzne.de/record/265942/files/DZNE-2023-01065.pdf$$yOpenAccess
000265942 8564_ $$uhttps://pub.dzne.de/record/265942/files/DZNE-2023-01065.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000265942 909CO $$ooai:pub.dzne.de:265942$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000265942 9101_ $$0I:(DE-588)1065079516$$60000-0001-8986-3440$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000265942 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810577$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000265942 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000265942 9141_ $$y2023
000265942 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000265942 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
000265942 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000265942 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
000265942 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELLS-BASEL : 2022$$d2023-10-26
000265942 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:15:06Z
000265942 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:15:06Z
000265942 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000265942 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000265942 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
000265942 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELLS-BASEL : 2022$$d2023-10-26
000265942 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000265942 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000265942 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000265942 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-01T15:15:06Z
000265942 9201_ $$0I:(DE-2719)1310007$$kAG Dityatev$$lMolecular Neuroplasticity$$x0
000265942 980__ $$ajournal
000265942 980__ $$aVDB
000265942 980__ $$aUNRESTRICTED
000265942 980__ $$aI:(DE-2719)1310007
000265942 9801_ $$aFullTexts