001     266094
005     20240112171210.0
024 7 _ |a pmid:37972537
|2 pmid
024 7 _ |a 10.1016/j.conb.2023.102811
|2 doi
024 7 _ |a 0959-4388
|2 ISSN
024 7 _ |a 1873-6882
|2 ISSN
024 7 _ |a altmetric:156670587
|2 altmetric
037 _ _ |a DZNE-2023-01095
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Blaess, Sandra
|b 0
245 _ _ |a Cell type specificity for circuit output in the midbrain dopaminergic system
260 _ _ |a Philadelphia, Pa.
|c 2023
|b Current Biology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701870400_2029
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Midbrain dopaminergic neurons are a relatively small group of neurons in the mammalian brain controlling a wide range of behaviors. In recent years, increasingly sophisticated tracing, imaging, transcriptomic, and machine learning approaches have provided substantial insights into the anatomical, molecular, and functional heterogeneity of dopaminergic neurons. Despite this wealth of new knowledge, it remains unclear whether and how the diverse features defining dopaminergic subclasses converge to delineate functional ensembles within the dopaminergic system. Here, we review recent studies investigating various aspects of dopaminergic heterogeneity and discuss how development, behavior, and disease influence subtype characteristics. We then outline what further approaches could be pursued to gain a more inclusive picture of dopaminergic diversity, which could be crucial to understanding the functional architecture of this system.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mesencephalon: metabolism
|2 MeSH
650 _ 2 |a Brain
|2 MeSH
650 _ 2 |a Dopaminergic Neurons: physiology
|2 MeSH
650 _ 2 |a Mammals
|2 MeSH
700 1 _ |a Krabbe, Sabine
|0 P:(DE-2719)9001056
|b 1
|e Last author
773 _ _ |a 10.1016/j.conb.2023.102811
|g Vol. 83, p. 102811 -
|0 PERI:(DE-600)2013035-1
|p 102811
|t Current opinion in neurobiology
|v 83
|y 2023
|x 0959-4388
856 4 _ |u https://pub.dzne.de/record/266094/files/DZNE-2023-01095.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/266094/files/DZNE-2023-01095.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:266094
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001056
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CURR OPIN NEUROBIOL : 2022
|d 2023-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CURR OPIN NEUROBIOL : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
920 1 _ |0 I:(DE-2719)5000059
|k AG Krabbe
|l Functional Diversity of Neural Circuits
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)5000059
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21