001     266329
005     20240826165952.0
024 7 _ |a 10.1007/s12031-023-02143-w
|2 doi
024 7 _ |a pmid:37606769
|2 pmid
024 7 _ |a pmc:PMC10694122
|2 pmc
024 7 _ |a 0895-8696
|2 ISSN
024 7 _ |a 1559-1166
|2 ISSN
024 7 _ |a altmetric:153224357
|2 altmetric
037 _ _ |a DZNE-2023-01118
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ferreira Rodrigues, Sara
|0 P:(DE-2719)2811766
|b 0
|e First author
245 _ _ |a Spreading of Tau Protein Does Not Depend on Aggregation Propensity.
260 _ _ |a New York, NY
|c 2023
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702479915_20238
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The stereotypical progression of Tau pathology during Alzheimer disease has been attributed to trans-neuronal spreading of misfolded Tau proteins, followed by prion-like templated aggregation of Tau. The nature of Tau and the cellular mechanisms of Tau spreading are still under debate. We hypothesized that Tau's propensity for aggregation would correlate with its ability to spread across synapses and propagate pathology. To study the progressive propagation of Tau proteins in brain regions relevant for Alzheimer disease, we used mice expressing near-physiological levels of full-length human Tau protein carrying pro-aggregant (TauΔK280, TauΔK) or anti-aggregant (TauΔK280-PP, TauΔK-PP) mutations in the entorhinal cortex (EC). To enhance Tau expression in the EC, we performed EC injections of adeno-associated virus (AAV) particles encoding TauΔK or TauΔK-PP. The brains of injected and non-injected EC/TauΔK and EC/TauΔK-PP mice were studied by immunohistological and biochemical techniques to detect Tau propagation to dentate gyrus (DG) neurons and Tau-induced pathological changes. Pro- and anti-aggregant mice had comparable low transgene expression (~0.2 times endogenous mouse Tau). They accumulated human Tau at similar rates and only in expressing EC neurons, including their axonal projections of the perforant path and presynaptic terminals in the molecular layer of the DG. Pro-aggregant EC/TauΔK mice showed misfolded Tau and synaptic protein alterations in EC neurons, not observed in anti-aggregant EC/TauΔK-PP mice. Additional AAV-mediated expression of TauΔK or TauΔK-PP in EC/TauΔK or EC/TauΔK-PP mice, respectively, increased the human Tau expression to ~0.65 times endogenous mouse Tau, with comparable spreading of TauΔK and TauΔK-PP throughout the EC. There was a low level of transcellular propagation of Tau protein, without pathological phosphorylation or misfolding, as judged by diagnostic antibodies. Additionally, TauΔK but not TauΔK-PP expression induced hippocampal astrogliosis. Low levels of pro- or anti-aggregant full-length Tau show equivalent distributions in EC neurons, independent of their aggregation propensity. Increasing the expression via AAV induce local Tau misfolding in the EC neurons, synaptotoxicity, and astrogliosis and lead to a low level of detectable trans-neuronal spreading of Tau. This depends on its concentration in the EC, but, contrary to expectations, does not depend on Tau's aggregation propensity/misfolding and does not lead to templated misfolding in recipient neurons.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Aggregation propensity
|2 Other
650 _ 7 |a Alzheimer disease
|2 Other
650 _ 7 |a Neuroinflammation
|2 Other
650 _ 7 |a Tau pathology
|2 Other
650 _ 7 |a Tau spreading
|2 Other
650 _ 7 |a tau Proteins
|2 NLM Chemicals
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a tau Proteins: genetics
|2 MeSH
650 _ 2 |a tau Proteins: metabolism
|2 MeSH
650 _ 2 |a Alzheimer Disease: genetics
|2 MeSH
650 _ 2 |a Tauopathies: metabolism
|2 MeSH
650 _ 2 |a Gliosis
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
700 1 _ |a Anglada-Huguet, Marta
|0 P:(DE-2719)9000008
|b 1
|u dzne
700 1 _ |a Hochgräfe, Katja
|0 P:(DE-2719)2810340
|b 2
700 1 _ |a Kaniyappan, Senthilvelrajan
|0 P:(DE-2719)2812350
|b 3
|u dzne
700 1 _ |a Wegmann, Susanne
|0 P:(DE-2719)2812695
|b 4
700 1 _ |a Mandelkow, Eva Maria
|0 P:(DE-2719)2541658
|b 5
|e Last author
773 _ _ |a 10.1007/s12031-023-02143-w
|g Vol. 73, no. 9-10, p. 693 - 712
|0 PERI:(DE-600)2071508-0
|n 9-10
|p 693 - 712
|t Journal of molecular neuroscience
|v 73
|y 2023
|x 0895-8696
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/266329/files/DZNE-2023-01118.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/266329/files/DZNE-2023-01118.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:266329
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811766
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9000008
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810340
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2812350
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812695
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2541658
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MOL NEUROSCI : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-24
920 1 _ |0 I:(DE-2719)1013015
|k AG Mandelkow 2
|l Cell and Animal Models of Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1011305
|k AG Schneider
|l Translational Dementia Research (Bonn)
|x 1
920 1 _ |0 I:(DE-2719)1810006
|k AG Wegmann
|l Protein Actions in Neurodegeneration
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013015
980 _ _ |a I:(DE-2719)1011305
980 _ _ |a I:(DE-2719)1810006
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21