000266473 001__ 266473
000266473 005__ 20240318103438.0
000266473 0247_ $$2doi$$a10.1080/27694127.2022.2143214
000266473 037__ $$aDZNE-2023-01158
000266473 082__ $$a610
000266473 1001_ $$0P:(DE-HGF)0$$aLechado-Terradas, Anna$$b0
000266473 245__ $$aParkin-dependent mitophagy occurs via proteasome-dependent steps sequentially targeting separate mitochondrial sub-compartments for autophagy
000266473 260__ $$aLondon$$bTaylor & Francis Group$$c2022
000266473 3367_ $$2DRIVER$$aarticle
000266473 3367_ $$2DataCite$$aOutput Types/Journal article
000266473 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704969833_10751
000266473 3367_ $$2BibTeX$$aARTICLE
000266473 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000266473 3367_ $$00$$2EndNote$$aJournal Article
000266473 520__ $$aPINK1/parkin-dependent mitophagy initially involves (phospho)ubiquitin-directed proteasome-dependent degradation of certain outer mitochondrial membrane (OMM) proteins (e.g. mitofusins) and the recruitment of autophagy adaptors to a group of ubiquitinated OMM proteins, eventually leading to autophagic removal of damaged mitochondria in stressed cells. Here we provide evidence that mitochondrial degradation occurs via stepwise delivery of separate mitochondrial sub-compartments for autophagic degradation. OMM and inner mitochondrial material appears to become separately isolated for autophagolysosomal degradation, not only in parkin-overexpressing HeLa cells but also in cells that express endogenous parkin (human embryonic kidney cells and neural progenitor cells) with slower mitophagy kinetics. The remaining inner mitochondrial material becomes degraded only after much prolonged membrane depolarization, potentially involving another proteasome-sensitive step. The present combined microscopy and proteomics analyses support the idea that cell stress-induced parkin-dependent mitophagy is a complex multi-step process with distinct mitochondrial sub-compartments being separately targeted for autophagic degradation.
000266473 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000266473 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000266473 7001_ $$aSchepers, Sandra$$b1
000266473 7001_ $$aZittlau, Katharina I.$$b2
000266473 7001_ $$0P:(DE-HGF)0$$aSharma, Karan$$b3
000266473 7001_ $$aOk, Orkun$$b4
000266473 7001_ $$0P:(DE-HGF)0$$aFitzgerald, Julia C.$$b5
000266473 7001_ $$aGeimer, Stefan$$b6
000266473 7001_ $$aWestermann, Benedikt$$b7
000266473 7001_ $$aMacek, Boris$$b8
000266473 7001_ $$0P:(DE-2719)2810803$$aKahle, Philipp$$b9$$eLast author$$udzne
000266473 773__ $$0PERI:(DE-600)3122278-X$$a10.1080/27694127.2022.2143214$$gVol. 1, no. 1, p. 576 - 602$$n1$$p576 - 602$$tAutophagy reports$$v1$$x2769-4127$$y2022
000266473 8564_ $$uhttps://pub.dzne.de/record/266473/files/DZNE-2023-01158.pdf$$yOpenAccess
000266473 8564_ $$uhttps://pub.dzne.de/record/266473/files/DZNE-2023-01158.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000266473 909CO $$ooai:pub.dzne.de:266473$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000266473 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810803$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000266473 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000266473 9141_ $$y2022
000266473 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000266473 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000266473 9201_ $$0I:(DE-2719)1210000-4$$kAG Kahle$$lFunctional Neurogenetics$$x0
000266473 980__ $$ajournal
000266473 980__ $$aVDB
000266473 980__ $$aI:(DE-2719)1210000-4
000266473 980__ $$aUNRESTRICTED
000266473 9801_ $$aFullTexts