000266503 001__ 266503
000266503 005__ 20240114002129.0
000266503 0247_ $$2doi$$a10.1016/j.brainres.2023.148646
000266503 0247_ $$2pmid$$apmid:37871674
000266503 0247_ $$2ISSN$$a0006-8993
000266503 0247_ $$2ISSN$$a1872-6240
000266503 0247_ $$2altmetric$$aaltmetric:155827169
000266503 037__ $$aDZNE-2023-01188
000266503 041__ $$aEnglish
000266503 082__ $$a610
000266503 1001_ $$aKeil, Julian$$b0
000266503 245__ $$aArtificial sharp-wave-ripples to support memory and counter neurodegeneration.
000266503 260__ $$aAmsterdam$$bElsevier$$c2024
000266503 3367_ $$2DRIVER$$aarticle
000266503 3367_ $$2DataCite$$aOutput Types/Journal article
000266503 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705061327_9476$$xReview Article
000266503 3367_ $$2BibTeX$$aARTICLE
000266503 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000266503 3367_ $$00$$2EndNote$$aJournal Article
000266503 520__ $$aInformation processed in our sensory neocortical areas is transported to the hippocampus during memory encoding, and between hippocampus and neocortex during memory consolidation, and retrieval. Short bursts of high-frequency oscillations, so called sharp-wave-ripples, have been proposed as a potential mechanism for this information transfer: They can synchronize neural activity to support the formation of local neural networks to store information, and between distant cortical sites to act as a bridge to transfer information between sensory cortical areas and hippocampus. In neurodegenerative diseases like Alzheimer's Disease, different neuropathological processes impair normal neural functioning and neural synchronization as well as sharp-wave-ripples, which impairs consolidation and retrieval of information, and compromises memory. Here, we formulate a new hypothesis, that artificially inducing sharp-wave-ripples with noninvasive high-frequency visual stimulation could potentially support memory functioning, as well as target the neuropathological processes underlying neurodegenerative diseases. We also outline key challenges for empirical tests of the hypothesis.
000266503 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000266503 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000266503 650_7 $$2Other$$aAlzheimer
000266503 650_7 $$2Other$$aGamma
000266503 650_7 $$2Other$$aHigh-Frequency
000266503 650_7 $$2Other$$aHippocampus
000266503 650_7 $$2Other$$aNeocortex
000266503 650_7 $$2Other$$aOscillation
000266503 650_7 $$2Other$$aRipple
000266503 650_7 $$2Other$$aTheta
000266503 650_2 $$2MeSH$$aHumans
000266503 650_2 $$2MeSH$$aHippocampus: physiology
000266503 650_2 $$2MeSH$$aNeocortex: physiology
000266503 650_2 $$2MeSH$$aParietal Lobe
000266503 650_2 $$2MeSH$$aMemory Consolidation: physiology
000266503 650_2 $$2MeSH$$aAlzheimer Disease
000266503 7001_ $$aKiiski, Hanni$$b1
000266503 7001_ $$aDoherty, Liam$$b2
000266503 7001_ $$aHernandez-Urbina, Victor$$b3
000266503 7001_ $$0P:(DE-2719)9001424$$aVassiliou, Chrystalleni$$b4$$udzne
000266503 7001_ $$0P:(DE-2719)2812587$$aDean, Camin$$b5$$udzne
000266503 7001_ $$aMüschenich, Markus$$b6
000266503 7001_ $$aBahmani, Hamed$$b7
000266503 773__ $$0PERI:(DE-600)1462674-3$$a10.1016/j.brainres.2023.148646$$gVol. 1822, p. 148646 -$$p148646$$tBrain research$$v1822$$x0006-8993$$y2024
000266503 8564_ $$uhttps://pub.dzne.de/record/266503/files/DZNE-2023-01188.pdf$$yOpenAccess
000266503 8564_ $$uhttps://pub.dzne.de/record/266503/files/DZNE-2023-01188.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000266503 909CO $$ooai:pub.dzne.de:266503$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000266503 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001424$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000266503 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812587$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000266503 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000266503 9141_ $$y2024
000266503 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000266503 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000266503 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-28$$wger
000266503 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN RES : 2022$$d2023-08-28
000266503 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
000266503 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
000266503 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
000266503 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
000266503 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
000266503 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-28
000266503 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
000266503 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-28
000266503 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-28
000266503 9201_ $$0I:(DE-2719)1813003$$kAG Dean$$lSynaptic Dysfunction$$x0
000266503 980__ $$ajournal
000266503 980__ $$aVDB
000266503 980__ $$aUNRESTRICTED
000266503 980__ $$aI:(DE-2719)1813003
000266503 9801_ $$aFullTexts