001     266775
005     20240318103537.0
024 7 _ |a 10.1101/2023.12.14.571214
|2 doi
024 7 _ |a altmetric:157507294
|2 altmetric
037 _ _ |a DZNE-2024-00038
082 _ _ |a 570
100 1 _ |a Kotowicz, Malwina
|0 P:(DE-2719)9001224
|b 0
|e First author
245 _ _ |a Gain efficiency with streamlined and automated data processing: Examples from high-throughput monoclonal antibody production
260 _ _ |a Cold Spring Harbor
|c 2023
|b Cold Spring Harbor Laboratory, NY
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1705490668_18421
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Data management and sample tracking in complex biological workflows are essential steps to ensure necessary documentation and guarantee the reusability of data and metadata. Currently, these steps pose challenges related to correct annotation and labeling, error detection, and safeguarding the quality of documentation. With growing acquisition of biological data and the expanding automatization of laboratory workflows, manual processing of samples is no longer favorable, as it is time- and resource-consuming, is prone to biases and errors, and lacks scalability and standardization. Thus, managing heterogeneous biological data calls for efficient and tailored systems, especially in laboratories run by biologists with limited computational expertise. Here, we showcase how to meet these challenges with a modular pipeline for data processing, facilitating the complex production of monoclonal antibodies from single B-cells. We present best practices for development of data processing pipelines concerned with extensive acquisition of biological data that undergoes continuous manipulation and analysis. Moreover, we assess the versatility of proposed design principles through a proof-of-concept data processing pipeline for automated induced pluripotent stem cell culture and differentiation. We show that our approach streamlines data management operations, speeds up experimental cycles and leads to enhanced reproducibility. Finally, adhering to the presented guidelines will promote compliance with FAIR principles upon publishing.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fengler, Sven
|0 P:(DE-2719)2812244
|b 1
700 1 _ |a Kurkowsky, Birgit
|0 P:(DE-2719)2810323
|b 2
700 1 _ |a Meyer-Berhorn, Anja
|0 P:(DE-2719)9000668
|b 3
700 1 _ |a Moretti, Elisa
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Blersch, Josephine
|0 P:(DE-2719)9000491
|b 5
700 1 _ |a Shumanska, Magdalena
|0 P:(DE-2719)9002857
|b 6
700 1 _ |a Schmidt, Gisela
|0 P:(DE-2719)9001848
|b 7
700 1 _ |a Kreye, Jakob
|0 P:(DE-2719)2811468
|b 8
700 1 _ |a Hoof, Scott
|0 P:(DE-2719)2812820
|b 9
700 1 _ |a Sánchez-Sendín, Elisa
|0 P:(DE-2719)2812653
|b 10
700 1 _ |a Reincke, Momsen
|0 P:(DE-2719)2812526
|b 11
700 1 _ |a Krüger, Lars
|0 P:(DE-2719)2810335
|b 12
700 1 _ |a Prüss, Harald
|0 P:(DE-2719)2810931
|b 13
700 1 _ |a Denner, Philip
|0 P:(DE-2719)2810245
|b 14
700 1 _ |a Fava, Eugenio
|0 P:(DE-2719)2159508
|b 15
|e Last author
700 1 _ |a Stappert, Dominik
|0 P:(DE-2719)2812160
|b 16
|e Last author
773 _ _ |a 10.1101/2023.12.14.571214
|0 PERI:(DE-600)2766415-6
|t bioRxiv beta
|y 2023
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/266775/files/DZNE-2024-00038.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/266775/files/DZNE-2024-00038.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:266775
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001224
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2812244
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810323
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000668
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9000491
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9002857
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)9001848
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2811468
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2812820
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2812653
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2812526
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2810335
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2810931
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2810245
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2159508
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2812160
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
920 1 _ |0 I:(DE-2719)1040190
|k LAT
|l Laboratory Automation Technologies (CRFS-LAT)
|x 0
920 1 _ |0 I:(DE-2719)1040260
|k LIS
|l Library and Information Services (CRFS-LIS)
|x 1
920 1 _ |0 I:(DE-2719)1030028
|k Tech Transfer
|l Technology Transfer and Industry Collaborations Unit
|x 2
920 1 _ |0 I:(DE-2719)1810003
|k AG Prüß
|l Autoimmune Encephalopathies
|x 3
920 1 _ |0 I:(DE-2719)1040000
|k AG Fava
|l Core Research Facilities & Services
|x 4
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1040190
980 _ _ |a I:(DE-2719)1040260
980 _ _ |a I:(DE-2719)1030028
980 _ _ |a I:(DE-2719)1810003
980 _ _ |a I:(DE-2719)1040000
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21