000266799 001__ 266799
000266799 005__ 20240121002249.0
000266799 0247_ $$2doi$$a10.1515/revneuro-2023-0038
000266799 0247_ $$2pmid$$apmid:37437141
000266799 0247_ $$2ISSN$$a0334-1763
000266799 0247_ $$2ISSN$$a2191-0200
000266799 0247_ $$2altmetric$$aaltmetric:152125329
000266799 037__ $$aDZNE-2024-00051
000266799 041__ $$aEnglish
000266799 082__ $$a610
000266799 1001_ $$0P:(DE-2719)9001992$$aFavila, Natalia$$b0$$eFirst author
000266799 245__ $$aRole of the basal ganglia in innate and learned behavioural sequences.
000266799 260__ $$aNew York, NY$$bde Gruyter$$c2024
000266799 3367_ $$2DRIVER$$aarticle
000266799 3367_ $$2DataCite$$aOutput Types/Journal article
000266799 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705504685_18420$$xReview Article
000266799 3367_ $$2BibTeX$$aARTICLE
000266799 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000266799 3367_ $$00$$2EndNote$$aJournal Article
000266799 520__ $$aIntegrating individual actions into coherent, organised behavioural units, a process called chunking, is a fundamental, evolutionarily conserved process that renders actions automatic. In vertebrates, evidence points to the basal ganglia - a complex network believed to be involved in action selection - as a key component of action sequence encoding, although the underlying mechanisms are only just beginning to be understood. Central pattern generators control many innate automatic behavioural sequences that form some of the most basic behaviours in an animal's repertoire, and in vertebrates, brainstem and spinal pattern generators are under the control of higher order structures such as the basal ganglia. Evidence suggests that the basal ganglia play a crucial role in the concatenation of simpler behaviours into more complex chunks, in the context of innate behavioural sequences such as chain grooming in rats, as well as sequences in which innate capabilities and learning interact such as birdsong, and sequences that are learned from scratch, such as lever press sequences in operant behaviour. It has been proposed that the role of the striatum, the largest input structure of the basal ganglia, might lie in selecting and allowing the relevant central pattern generators to gain access to the motor system in the correct order, while inhibiting other behaviours. As behaviours become more complex and flexible, the pattern generators seem to become more dependent on descending signals. Indeed, during learning, the striatum itself may adopt the functional characteristics of a higher order pattern generator, facilitated at the microcircuit level by striatal neuropeptides.
000266799 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000266799 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000266799 650_7 $$2Other$$achunking
000266799 650_7 $$2Other$$ainnate behaviour
000266799 650_7 $$2Other$$alearned behaviour
000266799 650_7 $$2Other$$aneuropeptides
000266799 650_7 $$2Other$$astriatum
000266799 650_2 $$2MeSH$$aRats
000266799 650_2 $$2MeSH$$aHumans
000266799 650_2 $$2MeSH$$aAnimals
000266799 650_2 $$2MeSH$$aBasal Ganglia
000266799 650_2 $$2MeSH$$aLearning
000266799 650_2 $$2MeSH$$aMemory
000266799 7001_ $$aGurney, Kevin$$b1
000266799 7001_ $$00000-0003-4334-261X$$aOverton, Paul G$$b2
000266799 773__ $$0PERI:(DE-600)2598365-9$$a10.1515/revneuro-2023-0038$$gVol. 35, no. 1, p. 35 - 55$$n1$$p35 - 55$$tReviews in the neurosciences$$v35$$x0334-1763$$y2024
000266799 8564_ $$uhttps://pub.dzne.de/record/266799/files/DZNE-2024-00051.pdf$$yOpenAccess
000266799 8564_ $$uhttps://pub.dzne.de/record/266799/files/DZNE-2024-00051.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000266799 909CO $$ooai:pub.dzne.de:266799$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000266799 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001992$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000266799 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000266799 9141_ $$y2024
000266799 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
000266799 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
000266799 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-28
000266799 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000266799 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREV NEUROSCIENCE : 2022$$d2023-08-28
000266799 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
000266799 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
000266799 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-28
000266799 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000266799 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2023-08-28
000266799 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
000266799 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-28$$wger
000266799 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
000266799 9201_ $$0I:(DE-2719)5000059$$kAG Krabbe$$lFunctional Diversity of Neural Circuits$$x0
000266799 980__ $$ajournal
000266799 980__ $$aVDB
000266799 980__ $$aUNRESTRICTED
000266799 980__ $$aI:(DE-2719)5000059
000266799 9801_ $$aFullTexts