000267061 001__ 267061
000267061 005__ 20240403131600.0
000267061 0247_ $$2doi$$a10.1088/1361-6560/ad164d
000267061 0247_ $$2pmid$$apmid:38100841
000267061 0247_ $$2ISSN$$a0031-9155
000267061 0247_ $$2ISSN$$a1361-6560
000267061 037__ $$aDZNE-2024-00070
000267061 041__ $$aEnglish
000267061 082__ $$a530
000267061 1001_ $$aFang, Lei$$b0
000267061 245__ $$aDevelopment and evaluation of a new high-TOF-resolution all-digital brain PET system.
000267061 260__ $$aBristol$$bIOP Publ.$$c2024
000267061 3367_ $$2DRIVER$$aarticle
000267061 3367_ $$2DataCite$$aOutput Types/Journal article
000267061 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707466070_2405
000267061 3367_ $$2BibTeX$$aARTICLE
000267061 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000267061 3367_ $$00$$2EndNote$$aJournal Article
000267061 520__ $$aObjective.Time-of-flight (TOF) capability and high sensitivity are essential for brain-dedicated positron emission tomography (PET) imaging, as they improve the contrast and the signal-to-noise ratio (SNR) enabling a precise localization of functional mechanisms in the different brain regions.Approach.We present a new brain PET system with transverse and axial field-of-view (FOV) of 320 mm and 255 mm, respectively. The system head is an array of 6 × 6 detection elements, each consisting of a 3.9 × 3.9 × 20 mm3lutetium-yttrium oxyorthosilicate crystal coupled with a 3.93 × 3.93 mm2SiPM. The SiPMs analog signals are individually digitized using the multi-voltage threshold (MVT) technology, employing a 1:1:1 coupling configuration.Main results.The brain PET system exhibits a TOF resolution of 249 ps at 5.3 kBq ml-1, an average sensitivity of 22.1 cps kBq-1, and a noise equivalent count rate (NECR) peak of 150.9 kcps at 8.36 kBq ml-1. Furthermore, the mini-Derenzo phantom study demonstrated the system's ability to distinguish rods with a diameter of 2.0 mm. Moreover, incorporating the TOF reconstruction algorithm in an image quality phantom study optimizes the background variability, resulting in reductions ranging from 44% (37 mm) to 75% (10 mm) with comparable contrast. In the human brain imaging study, the SNR improved by a factor of 1.7 with the inclusion of TOF, increasing from 27.07 to 46.05. Time-dynamic human brain imaging was performed, showing the distinctive traits of cortex and thalamus uptake, as well as of the arterial and venous flow with 2 s per time frame.Significance.The system exhibited a good TOF capability, which is coupled with the high sensitivity and count rate performance based on the MVT digital sampling technique. The developed TOF-enabled brain PET system opens the possibility of precise kinetic brain PET imaging, towards new quantitative predictive brain diagnostics.
000267061 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000267061 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000267061 650_7 $$2Other$$a249 ps
000267061 650_7 $$2Other$$aBrain PET
000267061 650_7 $$2Other$$aMVT sampling method
000267061 650_7 $$2Other$$aTOF
000267061 650_7 $$2NLM Chemicals$$alutetium orthosilicate
000267061 650_7 $$05H0DOZ21UJ$$2NLM Chemicals$$aLutetium
000267061 650_7 $$2NLM Chemicals$$aSilicates
000267061 650_2 $$2MeSH$$aHumans
000267061 650_2 $$2MeSH$$aPositron-Emission Tomography: methods
000267061 650_2 $$2MeSH$$aBrain: diagnostic imaging
000267061 650_2 $$2MeSH$$aSignal-To-Noise Ratio
000267061 650_2 $$2MeSH$$aPhantoms, Imaging
000267061 650_2 $$2MeSH$$aLutetium
000267061 650_2 $$2MeSH$$aSilicates
000267061 7001_ $$aZhang, Bo$$b1
000267061 7001_ $$aLi, Bingxuan$$b2
000267061 7001_ $$aZhang, Xiangsong$$b3
000267061 7001_ $$aZhou, Xiaoyun$$b4
000267061 7001_ $$aYang, Jigang$$b5
000267061 7001_ $$0P:(DE-HGF)0$$aLi, Ang$$b6
000267061 7001_ $$aShi, Xinchong$$b7
000267061 7001_ $$aLiu, Yuqing$$b8
000267061 7001_ $$0P:(DE-2719)2812799$$aKreißl, Michael$$b9$$udzne
000267061 7001_ $$00000-0002-3657-3607$$aD'Ascenzo, Nicola$$b10
000267061 7001_ $$aXiao, Peng$$b11
000267061 7001_ $$aXie, Qingguo$$b12
000267061 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ad164d$$gVol. 69, no. 2, p. 025019 -$$n2$$p025019$$tPhysics in medicine and biology$$v69$$x0031-9155$$y2024
000267061 8564_ $$uhttps://pub.dzne.de/record/267061/files/DZNE-2024-00070_Restricted.pdf
000267061 8564_ $$uhttps://pub.dzne.de/record/267061/files/DZNE-2024-00070_Restricted.pdf?subformat=pdfa$$xpdfa
000267061 909CO $$ooai:pub.dzne.de:267061$$pVDB
000267061 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812799$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000267061 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000267061 9141_ $$y2024
000267061 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
000267061 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000267061 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000267061 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
000267061 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000267061 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
000267061 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2022$$d2023-08-26
000267061 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000267061 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
000267061 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
000267061 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000267061 9201_ $$0I:(DE-2719)1340016$$kCore MR PET$$lCore MR PET$$x0
000267061 980__ $$ajournal
000267061 980__ $$aVDB
000267061 980__ $$aI:(DE-2719)1340016
000267061 980__ $$aUNRESTRICTED