001     267062
005     20240407003603.0
024 7 _ |a pmc:PMC10842783
|2 pmc
024 7 _ |a 10.1002/glia.24495
|2 doi
024 7 _ |a pmid:38031824
|2 pmid
024 7 _ |a 0894-1491
|2 ISSN
024 7 _ |a 1098-1136
|2 ISSN
024 7 _ |a altmetric:158962794
|2 altmetric
037 _ _ |a DZNE-2024-00071
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Anders, Stefanie
|b 0
245 _ _ |a Epileptic activity triggers rapid ROCK1-dependent astrocyte morphology changes.
260 _ _ |a Bognor Regis [u.a.]
|c 2024
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705576152_9225
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Long-term modifications of astrocyte function and morphology are well known to occur in epilepsy. They are implicated in the development and manifestation of the disease, but the relevant mechanisms and their pathophysiological role are not firmly established. For instance, it is unclear how quickly the onset of epileptic activity triggers astrocyte morphology changes and what the relevant molecular signals are. We therefore used two-photon excitation fluorescence microscopy to monitor astrocyte morphology in parallel to the induction of epileptiform activity. We uncovered astrocyte morphology changes within 10-20 min under various experimental conditions in acute hippocampal slices. In vivo, induction of status epilepticus resulted in similarly altered astrocyte morphology within 30 min. Further analysis in vitro revealed a persistent volume reduction of peripheral astrocyte processes triggered by induction of epileptiform activity. In addition, an impaired diffusion within astrocytes and within the astrocyte network was observed, which most likely is a direct consequence of the astrocyte remodeling. These astrocyte morphology changes were prevented by inhibition of the Rho GTPase RhoA and of the Rho-associated kinase (ROCK). Selective deletion of ROCK1 but not ROCK2 from astrocytes also prevented the morphology change after induction of epileptiform activity and reduced epileptiform activity. Together these observations reveal that epileptic activity triggers a rapid ROCK1-dependent astrocyte morphology change, which is mechanistically linked to the strength of epileptiform activity. This suggests that astrocytic ROCK1 signaling is a maladaptive response of astrocytes to the onset of epileptic activity.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a ROCK signaling
|2 Other
650 _ 7 |a astrocytes
|2 Other
650 _ 7 |a epilepsy
|2 Other
650 _ 7 |a gap junction coupling
|2 Other
650 _ 7 |a morphology
|2 Other
650 _ 7 |a remodeling
|2 Other
650 _ 7 |a rho-Associated Kinases
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 7 |a ROCK1 protein, human
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Astrocytes
|2 MeSH
650 _ 2 |a rho-Associated Kinases
|2 MeSH
650 _ 2 |a Epilepsy
|2 MeSH
650 _ 2 |a Status Epilepticus
|2 MeSH
650 _ 2 |a Hippocampus
|2 MeSH
700 1 _ |a Breithausen, Björn
|b 1
700 1 _ |a Unichenko, Petr
|b 2
700 1 _ |a Herde, Michel K
|b 3
700 1 _ |a Minge, Daniel
|b 4
700 1 _ |a Abramian, Adlin
|b 5
700 1 _ |a Behringer, Charlotte
|b 6
700 1 _ |a Deshpande, Tushar
|b 7
700 1 _ |a Boehlen, Anne
|b 8
700 1 _ |a Domingos, Cátia
|b 9
700 1 _ |a Henning, Lukas
|b 10
700 1 _ |a Pitsch, Julika
|b 11
700 1 _ |a Kim, Young-Bum
|b 12
700 1 _ |a Bedner, Peter
|0 0000-0003-0090-7553
|b 13
700 1 _ |a Steinhäuser, Christian
|0 0000-0003-2579-8357
|b 14
700 1 _ |a Henneberger, Christian
|0 P:(DE-2719)2811625
|b 15
|e Last author
|u dzne
773 _ _ |a 10.1002/glia.24495
|g Vol. 72, no. 3, p. 643 - 659
|0 PERI:(DE-600)1474828-9
|n 3
|p 643 - 659
|t Glia
|v 72
|y 2024
|x 0894-1491
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/267062/files/DZNE-2024-00071.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/267062/files/DZNE-2024-00071.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:267062
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2811625
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GLIA : 2022
|d 2023-08-24
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GLIA : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
920 1 _ |0 I:(DE-2719)1013029
|k AG Henneberger
|l Synaptic and Glial Plasticity
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013029
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21