001     267352
005     20240211002420.0
024 7 _ |a 10.1007/s00401-023-02668-9
|2 doi
024 7 _ |a pmid:38265489
|2 pmid
024 7 _ |a pmc:PMC10808175
|2 pmc
024 7 _ |a 0001-6322
|2 ISSN
024 7 _ |a 1432-0533
|2 ISSN
024 7 _ |a altmetric:158684980
|2 altmetric
037 _ _ |a DZNE-2024-00116
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Neyazi, Sina
|b 0
245 _ _ |a Transcriptomic and epigenetic dissection of spinal ependymoma (SP-EPN) identifies clinically relevant subtypes enriched for tumors with and without NF2 mutation.
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707386947_9358
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ependymomas encompass multiple clinically relevant tumor types based on localization and molecular profiles. Tumors of the methylation class 'spinal ependymoma' (SP-EPN) represent the most common intramedullary neoplasms in children and adults. However, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical relevance have been described in a large, epigenetically defined series. Transcriptomic (n = 72), epigenetic (n = 225), genetic (n = 134), and clinical data (n = 112) were integrated for a detailed molecular overview on SP-EPN. Additionally, we mapped SP-EPN transcriptomes to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. The integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord revealed that SP-EPN display the highest similarities to mature adult ependymal cells. Unsupervised hierarchical clustering of transcriptomic data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype A tumors primarily carried previously known germline or sporadic NF2 mutations together with 22q loss (bi-allelic NF2 loss), resulting in decreased NF2 expression. Furthermore, they more often presented as multilocular disease and demonstrated a significantly reduced progression-free survival as compared to SP-EP subtype B. In contrast, subtype B predominantly contained samples without NF2 mutation detected in sequencing together with 22q loss (monoallelic NF2 loss). These tumors showed regular NF2 expression but more extensive global copy number alterations. Based on integrated molecular profiling of a large multi-center cohort, we identified two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Classification
|2 Other
650 _ 7 |a DNA methylation
|2 Other
650 _ 7 |a Ependymoma
|2 Other
650 _ 7 |a NF2-related schwannomatosis
|2 Other
650 _ 7 |a Transcriptomics
|2 Other
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Gene Expression Profiling
|2 MeSH
650 _ 2 |a Ependymoma
|2 MeSH
650 _ 2 |a Spinal Cord Neoplasms
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Epigenesis, Genetic
|2 MeSH
700 1 _ |a Yamazawa, Erika
|b 1
700 1 _ |a Hack, Karoline
|b 2
700 1 _ |a Tanaka, Shota
|b 3
700 1 _ |a Nagae, Genta
|b 4
700 1 _ |a Kresbach, Catena
|b 5
700 1 _ |a Umeda, Takayoshi
|b 6
700 1 _ |a Eckhardt, Alicia
|b 7
700 1 _ |a Tatsuno, Kenji
|b 8
700 1 _ |a Pohl, Lara
|b 9
700 1 _ |a Hana, Taijun
|b 10
700 1 _ |a Bockmayr, Michael
|b 11
700 1 _ |a Kim, Phyo
|b 12
700 1 _ |a Dorostkar, Mario M
|0 P:(DE-2719)2812547
|b 13
700 1 _ |a Takami, Toshihiro
|b 14
700 1 _ |a Obrecht, Denise
|b 15
700 1 _ |a Takai, Keisuke
|b 16
700 1 _ |a Suwala, Abigail K
|b 17
700 1 _ |a Komori, Takashi
|b 18
700 1 _ |a Godbole, Shweta
|b 19
700 1 _ |a Wefers, Annika K
|b 20
700 1 _ |a Otani, Ryohei
|b 21
700 1 _ |a Neumann, Julia E
|b 22
700 1 _ |a Higuchi, Fumi
|b 23
700 1 _ |a Schweizer, Leonille
|b 24
700 1 _ |a Nakanishi, Yuta
|b 25
700 1 _ |a Monoranu, Camelia-Maria
|b 26
700 1 _ |a Takami, Hirokazu
|b 27
700 1 _ |a Engertsberger, Lara
|b 28
700 1 _ |a Yamada, Keisuke
|b 29
700 1 _ |a Ruf, Viktoria
|b 30
700 1 _ |a Nomura, Masashi
|b 31
700 1 _ |a Mohme, Theresa
|b 32
700 1 _ |a Mukasa, Akitake
|b 33
700 1 _ |a Herms, Jochen
|0 P:(DE-2719)2810441
|b 34
700 1 _ |a Takayanagi, Shunsaku
|b 35
700 1 _ |a Mynarek, Martin
|b 36
700 1 _ |a Matsuura, Reiko
|b 37
700 1 _ |a Lamszus, Katrin
|b 38
700 1 _ |a Ishii, Kazuhiko
|b 39
700 1 _ |a Kluwe, Lan
|b 40
700 1 _ |a Imai, Hideaki
|b 41
700 1 _ |a von Deimling, Andreas
|b 42
700 1 _ |a Koike, Tsukasa
|b 43
700 1 _ |a Benesch, Martin
|b 44
700 1 _ |a Kushihara, Yoshihiro
|b 45
700 1 _ |a Snuderl, Matija
|b 46
700 1 _ |a Nambu, Shohei
|b 47
700 1 _ |a Frank, Stephan
|b 48
700 1 _ |a Omura, Takaki
|b 49
700 1 _ |a Hagel, Christian
|b 50
700 1 _ |a Kugasawa, Kazuha
|b 51
700 1 _ |a Mautner, Viktor F
|b 52
700 1 _ |a Ichimura, Koichi
|b 53
700 1 _ |a Rutkowski, Stefan
|b 54
700 1 _ |a Aburatani, Hiroyuki
|b 55
700 1 _ |a Saito, Nobuhito
|b 56
700 1 _ |a Schüller, Ulrich
|0 P:(DE-2719)9000979
|b 57
773 _ _ |a 10.1007/s00401-023-02668-9
|g Vol. 147, no. 1, p. 22
|0 PERI:(DE-600)1458410-4
|n 1
|p 22
|t Acta neuropathologica
|v 147
|y 2024
|x 0001-6322
856 4 _ |u https://pub.dzne.de/record/267352/files/DZNE-2024-00116%20SUP1.pdf
856 4 _ |u https://pub.dzne.de/record/267352/files/DZNE-2024-00116%20SUP2.xlsx
856 4 _ |u https://pub.dzne.de/record/267352/files/DZNE-2024-00116%20SUP3.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/267352/files/DZNE-2024-00116.pdf
856 4 _ |u https://pub.dzne.de/record/267352/files/DZNE-2024-00116%20SUP2.csv
856 4 _ |u https://pub.dzne.de/record/267352/files/DZNE-2024-00116%20SUP2.ods
856 4 _ |u https://pub.dzne.de/record/267352/files/DZNE-2024-00116%20SUP2.xls
856 4 _ |x pdfa
|u https://pub.dzne.de/record/267352/files/DZNE-2024-00116%20SUP1.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://pub.dzne.de/record/267352/files/DZNE-2024-00116%20SUP3.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/267352/files/DZNE-2024-00116.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:267352
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2812547
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 34
|6 P:(DE-2719)2810441
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 57
|6 P:(DE-2719)9000979
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACTA NEUROPATHOL : 2022
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
920 1 _ |0 I:(DE-2719)1110001
|k AG Herms
|l Translational Brain Research
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21