001     267892
005     20240403102735.0
024 7 _ |a pmid:38371490
|2 pmid
024 7 _ |a 10.1016/j.ynstr.2024.100613
|2 doi
024 7 _ |a altmetric:159828175
|2 altmetric
024 7 _ |a pmc:PMC10869260
|2 pmc
037 _ _ |a DZNE-2024-00168
082 _ _ |a 570
100 1 _ |a Hein, Emil
|0 0009-0007-7482-7667
|b 0
245 _ _ |a Does sleep promote adaptation to acute stress: An experimental study
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708336456_1854
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Evidence of the impact of chronic stress on sleep is abundant, yet experimental sleep studies with a focus on acute stress are scarce and the results are mixed. Our study aimed to fill this gap by experimentally investigating the effects of pre-sleep social stress on sleep dynamics during the subsequent night, as measured with polysomnography (PSG).Thirty-four healthy individuals (65% females, Mage = 25.76 years SD = 3.35) underwent a stress-inducing (SC) or neutral control condition (CC) in virtual reality (VR). We used overnight EEG measurements to analyze the basic sleep parameters and power spectral density (PSD) across the sleep cycles, and measured heart rate and its variability (HRV), skin electrodermal activity (EDA), and salivary cortisol to capture physiological arousal during the VR task and the pre-sleep period.Following acute stress (SC), the amount of slow-wave sleep (SWS) was higher and N2 sleep lower relative to CC, specifically in the first sleep cycle. In SC, PSD was elevated in the beta-low (16-24 Hz) and beta-high (25-35 Hz) frequency ranges during both stages N2 and SWS over the entire night.Sleep promoted adaptation to acute social stress by a longer duration of SWS in the subsequent sleep period, especially in early sleep. A similar homeostatic effect towards restorative sleep is well-evidenced in animal model stress studies but has not been previously reported in experimental human studies. Whether the high-frequency PSD activity during stages N2 and SWS also serves in the resolution of transient stress, remains open.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
650 _ 7 |a Experimental study
|2 Other
650 _ 7 |a Polysomnography
|2 Other
650 _ 7 |a Sleep
|2 Other
650 _ 7 |a Stress
|2 Other
650 _ 7 |a Virtual reality
|2 Other
700 1 _ |a Halonen, Risto
|b 1
700 1 _ |a Wolbers, Thomas
|0 P:(DE-2719)2810583
|b 2
|u dzne
700 1 _ |a Makkonen, Tommi
|b 3
700 1 _ |a Kyllönen, Markus
|b 4
700 1 _ |a Kuula, Liisa
|b 5
700 1 _ |a Kurki, Ilmari
|b 6
700 1 _ |a Stepnicka, Philipp
|0 P:(DE-2719)2812507
|b 7
|u dzne
700 1 _ |a Pesonen, Anu-Katriina
|b 8
773 _ _ |a 10.1016/j.ynstr.2024.100613
|g Vol. 29, p. 100613 -
|0 PERI:(DE-600)2816500-7
|p 100613
|t Neurobiology of Stress
|v 29
|y 2024
|x 2352-2895
856 4 _ |u https://pub.dzne.de/record/267892/files/DZNE-2024-00168%20SUP.docx
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/267892/files/DZNE-2024-00168.pdf
856 4 _ |u https://pub.dzne.de/record/267892/files/DZNE-2024-00168%20SUP.doc
856 4 _ |u https://pub.dzne.de/record/267892/files/DZNE-2024-00168%20SUP.odt
856 4 _ |u https://pub.dzne.de/record/267892/files/DZNE-2024-00168%20SUP.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/267892/files/DZNE-2024-00168.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:267892
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810583
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-2719)2812507
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-02-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROBIOL STRESS : 2022
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:51:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:51:15Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-02-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-02-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:51:15Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-02-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROBIOL STRESS : 2022
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-02-05
920 1 _ |0 I:(DE-2719)1310002
|k AG Wolbers
|l Aging, Cognition and Technology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1310002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21