000268475 001__ 268475
000268475 005__ 20250522160016.0
000268475 0247_ $$2doi$$a10.5281/ZENODO.10623892
000268475 0247_ $$2doi$$a10.5281/ZENODO.10623893
000268475 037__ $$aDZNE-2024-00227
000268475 1001_ $$0P:(DE-2719)2812449$$aEstrada, Santiago$$b0
000268475 245__ $$aDataset: HypVINN Checkpoints (v. 1.0.0)
000268475 260__ $$bZenodo$$c2024
000268475 3367_ $$2BibTeX$$aMISC
000268475 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1747922392_14718
000268475 3367_ $$026$$2EndNote$$aChart or Table
000268475 3367_ $$2DataCite$$aDataset
000268475 3367_ $$2ORCID$$aDATA_SET
000268475 3367_ $$2DINI$$aResearchData
000268475 500__ $$aIs published in Publication: 10.1162/imag_a_00034 (DOI)
000268475 520__ $$aTraining checkpoints for HypVINN (https://github.com/Deep-MI/FastSurfer) - please cite the paper when using this resource (https://doi.org/10.1162/imag_a_00034). Abstract The hypothalamus plays a crucial role in the regulation of a broad range of physiological, behavioral, and cognitive functions. However, despite its importance, only a few small-scale neuroimaging studies have investigated its substructures, likely due to the lack of fully automated segmentation tools to address scalability and reproducibility issues of manual segmentation. While the only previous attempt to automatically sub-segment the hypothalamus with a neural network showed promise for 1.0 mm isotropic T1-weighted (T1w) magnetic resonance imaging (MRI), there is a need for an automated tool to sub-segment also high-resolutional (HiRes) MR scans, as they are becoming widely available, and include structural detail also from multi-modal MRI. We, therefore, introduce a novel, fast, and fully automated deep-learning method named HypVINN for sub-segmentation of the hypothalamus and adjacent structures on 0.8 mm isotropic T1w and T2w brain MR images that is robust to missing modalities. We extensively validate our model with respect to segmentation accuracy, generalizability, in-session test-retest reliability, and sensitivity to replicate hypothalamic volume effects (e.g., sex differences). The proposed method exhibits high segmentation performance both for standalone T1w images as well as for T1w/T2w image pairs. Even with the additional capability to accept flexible inputs, our model matches or exceeds the performance of state-of-the-art methods with fixed inputs. We, further, demonstrate the generalizability of our method in experiments with 1.0 mm MR scans from both the Rhineland Study and the UK Biobank—an independent dataset never encountered during training with different acquisition parameters and demographics. Finally, HypVINN can perform the segmentation in less than a minute (graphical processing unit [GPU]) and will be available in the open source FastSurfer neuroimaging software suite, offering a validated, efficient, and scalable solution for evaluating imaging-derived phenotypes of the hypothalamus.
000268475 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000268475 588__ $$aDataset connected to DataCite
000268475 693__ $$0EXP:(DE-2719)Rhineland Study-20190321$$5EXP:(DE-2719)Rhineland Study-20190321$$eRhineland Study / Bonn$$x0
000268475 7001_ $$0P:(DE-2719)2814290$$aKügler, David$$b1
000268475 7001_ $$0P:(DE-HGF)0$$aBahrami, Emad$$b2
000268475 7001_ $$0P:(DE-2719)9001766$$aXu, Peng$$b3
000268475 7001_ $$0P:(DE-2719)2814343$$aMousa, Dilshad$$b4
000268475 7001_ $$0P:(DE-2719)2810403$$aBreteler, Monique M. B.$$b5
000268475 7001_ $$0P:(DE-2719)2812578$$aAziz, N. Ahmad$$b6
000268475 7001_ $$0P:(DE-2719)2812134$$aReuter, Martin$$b7
000268475 7001_ $$0P:(DE-2719)2812449$$aEstrada, Santiago$$b8$$eResearcher
000268475 7001_ $$aKügler, David$$b9$$eResearcher
000268475 7001_ $$aBahrami, Emad$$b10$$eResearcher
000268475 7001_ $$aXu, Peng$$b11$$eResearcher
000268475 7001_ $$aMousa, Dilshad$$b12$$eResearcher
000268475 7001_ $$0P:(DE-2719)2810403$$aBreteler, Monique M. B.$$b13$$eSupervisor
000268475 7001_ $$0P:(DE-2719)2812578$$aAziz, N. Ahmad$$b14$$eSupervisor$$udzne
000268475 7001_ $$0P:(DE-2719)2812134$$aReuter, Martin$$b15$$eSupervisor
000268475 773__ $$a10.5281/ZENODO.10623893
000268475 7870_ $$0DZNE-2024-00132$$aEstrada, Santiago et.al.$$dCambridge, MA : MIT Press, 2023$$iRelatedTo$$r$$tFastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and adjacent structures on high-resolutional brain MRI
000268475 8564_ $$uhttps://pub.dzne.de/record/268475/files/DZNE-2024-00227%20%281%29.pkl
000268475 8564_ $$uhttps://pub.dzne.de/record/268475/files/DZNE-2024-00227%20%282%29.pkl
000268475 8564_ $$uhttps://pub.dzne.de/record/268475/files/DZNE-2024-00227%20%283%29.pkl
000268475 909CO $$ooai:pub.dzne.de:268475$$pVDB
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812449$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814290$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-HGF)0$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001766$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814343$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810403$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812578$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812134$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812449$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810403$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b13$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812578$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b14$$kDZNE
000268475 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812134$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b15$$kDZNE
000268475 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000268475 9141_ $$y2024
000268475 9201_ $$0I:(DE-2719)1040310$$kAG Reuter$$lArtificial Intelligence in Medicine$$x0
000268475 9201_ $$0I:(DE-2719)1012001$$kAG Breteler$$lPopulation Health Sciences$$x1
000268475 9201_ $$0I:(DE-2719)5000071$$kAG Aziz$$lPopulation & Clinical Neuroepidemiology$$x2
000268475 980__ $$adataset
000268475 980__ $$aVDB
000268475 980__ $$aI:(DE-2719)1040310
000268475 980__ $$aI:(DE-2719)1012001
000268475 980__ $$aI:(DE-2719)5000071
000268475 980__ $$aUNRESTRICTED