001     268475
005     20250522160016.0
024 7 _ |a 10.5281/ZENODO.10623892
|2 doi
024 7 _ |a 10.5281/ZENODO.10623893
|2 doi
037 _ _ |a DZNE-2024-00227
100 1 _ |a Estrada, Santiago
|0 P:(DE-2719)2812449
|b 0
245 _ _ |a Dataset: HypVINN Checkpoints (v. 1.0.0)
260 _ _ |c 2024
|b Zenodo
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1747922392_14718
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
500 _ _ |a Is published in Publication: 10.1162/imag_a_00034 (DOI)
520 _ _ |a Training checkpoints for HypVINN (https://github.com/Deep-MI/FastSurfer) - please cite the paper when using this resource (https://doi.org/10.1162/imag_a_00034). Abstract The hypothalamus plays a crucial role in the regulation of a broad range of physiological, behavioral, and cognitive functions. However, despite its importance, only a few small-scale neuroimaging studies have investigated its substructures, likely due to the lack of fully automated segmentation tools to address scalability and reproducibility issues of manual segmentation. While the only previous attempt to automatically sub-segment the hypothalamus with a neural network showed promise for 1.0 mm isotropic T1-weighted (T1w) magnetic resonance imaging (MRI), there is a need for an automated tool to sub-segment also high-resolutional (HiRes) MR scans, as they are becoming widely available, and include structural detail also from multi-modal MRI. We, therefore, introduce a novel, fast, and fully automated deep-learning method named HypVINN for sub-segmentation of the hypothalamus and adjacent structures on 0.8 mm isotropic T1w and T2w brain MR images that is robust to missing modalities. We extensively validate our model with respect to segmentation accuracy, generalizability, in-session test-retest reliability, and sensitivity to replicate hypothalamic volume effects (e.g., sex differences). The proposed method exhibits high segmentation performance both for standalone T1w images as well as for T1w/T2w image pairs. Even with the additional capability to accept flexible inputs, our model matches or exceeds the performance of state-of-the-art methods with fixed inputs. We, further, demonstrate the generalizability of our method in experiments with 1.0 mm MR scans from both the Rhineland Study and the UK Biobank—an independent dataset never encountered during training with different acquisition parameters and demographics. Finally, HypVINN can perform the segmentation in less than a minute (graphical processing unit [GPU]) and will be available in the open source FastSurfer neuroimaging software suite, offering a validated, efficient, and scalable solution for evaluating imaging-derived phenotypes of the hypothalamus.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
693 _ _ |0 EXP:(DE-2719)Rhineland Study-20190321
|5 EXP:(DE-2719)Rhineland Study-20190321
|e Rhineland Study / Bonn
|x 0
700 1 _ |a Kügler, David
|0 P:(DE-2719)2814290
|b 1
700 1 _ |a Bahrami, Emad
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Xu, Peng
|0 P:(DE-2719)9001766
|b 3
700 1 _ |a Mousa, Dilshad
|0 P:(DE-2719)2814343
|b 4
700 1 _ |a Breteler, Monique M. B.
|0 P:(DE-2719)2810403
|b 5
700 1 _ |a Aziz, N. Ahmad
|0 P:(DE-2719)2812578
|b 6
700 1 _ |a Reuter, Martin
|0 P:(DE-2719)2812134
|b 7
700 1 _ |a Estrada, Santiago
|0 P:(DE-2719)2812449
|b 8
|e Researcher
700 1 _ |a Kügler, David
|b 9
|e Researcher
700 1 _ |a Bahrami, Emad
|b 10
|e Researcher
700 1 _ |a Xu, Peng
|b 11
|e Researcher
700 1 _ |a Mousa, Dilshad
|b 12
|e Researcher
700 1 _ |a Breteler, Monique M. B.
|0 P:(DE-2719)2810403
|b 13
|e Supervisor
700 1 _ |a Aziz, N. Ahmad
|0 P:(DE-2719)2812578
|b 14
|e Supervisor
|u dzne
700 1 _ |a Reuter, Martin
|0 P:(DE-2719)2812134
|b 15
|e Supervisor
773 _ _ |a 10.5281/ZENODO.10623893
787 0 _ |a Estrada, Santiago et.al.
|d Cambridge, MA : MIT Press, 2023
|i RelatedTo
|0 DZNE-2024-00132
|r
|t FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and adjacent structures on high-resolutional brain MRI
856 4 _ |u https://pub.dzne.de/record/268475/files/DZNE-2024-00227%20%281%29.pkl
856 4 _ |u https://pub.dzne.de/record/268475/files/DZNE-2024-00227%20%282%29.pkl
856 4 _ |u https://pub.dzne.de/record/268475/files/DZNE-2024-00227%20%283%29.pkl
909 C O |p VDB
|o oai:pub.dzne.de:268475
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812449
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2814290
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9001766
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2814343
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810403
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812578
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2812134
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2812449
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2810403
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2812578
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2812134
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 0
920 1 _ |0 I:(DE-2719)1012001
|k AG Breteler
|l Population Health Sciences
|x 1
920 1 _ |0 I:(DE-2719)5000071
|k AG Aziz
|l Population & Clinical Neuroepidemiology
|x 2
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1040310
980 _ _ |a I:(DE-2719)1012001
980 _ _ |a I:(DE-2719)5000071
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21