000268496 001__ 268496
000268496 005__ 20240403113252.0
000268496 0247_ $$2pmc$$apmc:PMC10948021
000268496 0247_ $$2doi$$a10.1016/j.celrep.2024.113774
000268496 0247_ $$2pmid$$apmid:38349791
000268496 0247_ $$2ISSN$$a2211-1247
000268496 0247_ $$2ISSN$$a2639-1856
000268496 0247_ $$2altmetric$$aaltmetric:159504892
000268496 037__ $$aDZNE-2024-00242
000268496 041__ $$aEnglish
000268496 082__ $$a610
000268496 1001_ $$0P:(DE-2719)2814117$$aToda, Tomohisa$$b0$$eFirst author$$udzne
000268496 245__ $$aLong interspersed nuclear elements safeguard neural progenitors from precocious differentiation.
000268496 260__ $$a[New York, NY]$$bElsevier$$c2024
000268496 3367_ $$2DRIVER$$aarticle
000268496 3367_ $$2DataCite$$aOutput Types/Journal article
000268496 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710419235_24479
000268496 3367_ $$2BibTeX$$aARTICLE
000268496 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000268496 3367_ $$00$$2EndNote$$aJournal Article
000268496 520__ $$aLong interspersed nuclear element-1 (L1 or LINE-1) is a highly abundant mobile genetic element in both humans and mice, comprising almost 20% of each genome. L1s are silenced by several mechanisms, as their uncontrolled expression has the potential to induce genomic instability. However, L1s are paradoxically expressed at high levels in differentiating neural progenitor cells. Using in vitro and in vivo techniques to modulate L1 expression, we report that L1s play a critical role in both human and mouse brain development by regulating the rate of neural differentiation in a reverse-transcription-independent manner.
000268496 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000268496 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000268496 650_7 $$2Other$$aCP: Developmental biology
000268496 650_7 $$2Other$$aCP: Neuroscience
000268496 650_7 $$2Other$$aL1
000268496 650_7 $$2Other$$aLINE-1
000268496 650_7 $$2Other$$abrain development
000268496 650_7 $$2Other$$aneural progenitor cells
000268496 650_7 $$2Other$$arepetitive elements
000268496 650_2 $$2MeSH$$aHumans
000268496 650_2 $$2MeSH$$aAnimals
000268496 650_2 $$2MeSH$$aMice
000268496 650_2 $$2MeSH$$aCell Differentiation
000268496 650_2 $$2MeSH$$aGenomic Instability
000268496 650_2 $$2MeSH$$aLong Interspersed Nucleotide Elements
000268496 650_2 $$2MeSH$$aNeural Stem Cells
000268496 7001_ $$aBedrosian, Tracy A$$b1
000268496 7001_ $$aSchafer, Simon T$$b2
000268496 7001_ $$aCuoco, Michael S$$b3
000268496 7001_ $$aLinker, Sara B$$b4
000268496 7001_ $$aGhassemzadeh, Saeed$$b5
000268496 7001_ $$aMitchell, Lisa$$b6
000268496 7001_ $$aWhiteley, Jack T$$b7
000268496 7001_ $$aNovaresi, Nicole$$b8
000268496 7001_ $$aMcDonald, Aidan H$$b9
000268496 7001_ $$aGallina, Iryna S$$b10
000268496 7001_ $$aYoon, Hyojung$$b11
000268496 7001_ $$aHester, Mark E$$b12
000268496 7001_ $$aPena, Monique$$b13
000268496 7001_ $$aLim, Christina$$b14
000268496 7001_ $$aSuljic, Emelia$$b15
000268496 7001_ $$aAlFatah Mansour, Abed$$b16
000268496 7001_ $$aBoulard, Matthieu$$b17
000268496 7001_ $$aParylak, Sarah L$$b18
000268496 7001_ $$aGage, Fred H$$b19
000268496 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2024.113774$$gVol. 43, no. 2, p. 113774 -$$n2$$p113774$$tCell reports$$v43$$x2211-1247$$y2024
000268496 8564_ $$uhttps://pub.dzne.de/record/268496/files/DZNE-2024-00242%20SUP.zip
000268496 8564_ $$uhttps://pub.dzne.de/record/268496/files/DZNE-2024-00242.pdf$$yOpenAccess
000268496 8564_ $$uhttps://pub.dzne.de/record/268496/files/DZNE-2024-00242.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000268496 909CO $$ooai:pub.dzne.de:268496$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000268496 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814117$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000268496 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000268496 9141_ $$y2024
000268496 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000268496 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
000268496 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
000268496 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-26
000268496 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000268496 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2022$$d2023-10-26
000268496 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:49:39Z
000268496 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:49:39Z
000268496 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
000268496 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
000268496 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000268496 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000268496 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:49:39Z
000268496 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
000268496 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2022$$d2023-10-26
000268496 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000268496 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000268496 9201_ $$0I:(DE-2719)1710014$$kAG Toda$$lNuclear Architecture in Neural Plasticity and Aging$$x0
000268496 980__ $$ajournal
000268496 980__ $$aVDB
000268496 980__ $$aUNRESTRICTED
000268496 980__ $$aI:(DE-2719)1710014
000268496 9801_ $$aFullTexts