Home > Publications Database > Efficient encoding of aversive location by CA3 long-range projections. > print |
001 | 268784 | ||
005 | 20250603100721.0 | ||
024 | 7 | _ | |a 10.1016/j.celrep.2024.113957 |2 doi |
024 | 7 | _ | |a pmid:38489262 |2 pmid |
024 | 7 | _ | |a 2211-1247 |2 ISSN |
024 | 7 | _ | |a 2639-1856 |2 ISSN |
024 | 7 | _ | |a altmetric:160906155 |2 altmetric |
037 | _ | _ | |a DZNE-2024-00327 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Nikbakht, Negar |b 0 |
245 | _ | _ | |a Efficient encoding of aversive location by CA3 long-range projections. |
260 | _ | _ | |a [New York, NY] |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1748936719_11720 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Memorizing locations that are harmful or dangerous is a key capability of all organisms and requires an integration of affective and spatial information. In mammals, the dorsal hippocampus mainly processes spatial information, while the intermediate to ventral hippocampal divisions receive affective information via the amygdala. However, how spatial and aversive information is integrated is currently unknown. To address this question, we recorded the activity of hippocampal long-range CA3 axons at single-axon resolution in mice forming an aversive spatial memory. We show that intermediate CA3 to dorsal CA3 (i-dCA3) projections rapidly overrepresent areas preceding the location of an aversive stimulus due to a spatially selective addition of new place-coding axons followed by spatially non-specific stabilization. This sequence significantly improves the encoding of location by the i-dCA3 axon population. These results suggest that i-dCA3 axons transmit a precise, denoised, and stable signal indicating imminent danger to the dorsal hippocampus. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a CA3 subfield |2 Other |
650 | _ | 7 | |a CP: Neuroscience |2 Other |
650 | _ | 7 | |a aversive learning |2 Other |
650 | _ | 7 | |a dorsal hippocampus |2 Other |
650 | _ | 7 | |a place coding |2 Other |
650 | _ | 7 | |a ventral hippocampus |2 Other |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Hippocampus |2 MeSH |
650 | _ | 2 | |a Axons |2 MeSH |
650 | _ | 2 | |a Spatial Memory |2 MeSH |
650 | _ | 2 | |a Mammals |2 MeSH |
700 | 1 | _ | |a Pofahl, Martin |b 1 |
700 | 1 | _ | |a Miguel-López, Albert |b 2 |
700 | 1 | _ | |a Kamali, Fateme |b 3 |
700 | 1 | _ | |a Tchumatchenko, Tatjana |b 4 |
700 | 1 | _ | |a Beck, Heinz |0 P:(DE-2719)2000044 |b 5 |e Last author |u dzne |
773 | _ | _ | |a 10.1016/j.celrep.2024.113957 |g Vol. 43, no. 3, p. 113957 - |0 PERI:(DE-600)2649101-1 |n 3 |p 113957 |t Cell reports |v 43 |y 2024 |x 2211-1247 |
856 | 4 | _ | |u https://pub.dzne.de/record/268784/files/DZNE-2024-00327%20SUP.zip |
856 | 4 | _ | |u https://pub.dzne.de/record/268784/files/DZNE-2024-00327.pdf |y OpenAccess |
856 | 4 | _ | |u https://pub.dzne.de/record/268784/files/DZNE-2024-00327.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:pub.dzne.de:268784 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2000044 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELL REP : 2022 |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:49:39Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:49:39Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:49:39Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CELL REP : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
920 | 1 | _ | |0 I:(DE-2719)6000011 |k Bonn common |l Bonn common |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-2719)6000011 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|