Home > Publications Database > Structural insights into the GTP-driven monomerization and activation of a bacterial LRRK2 homolog using allosteric nanobodies. > print |
001 | 269345 | ||
005 | 20240809090115.0 | ||
024 | 7 | _ | |a 10.7554/eLife.94503 |2 doi |
024 | 7 | _ | |a pmid:38666771 |2 pmid |
024 | 7 | _ | |a pmc:PMC11052575 |2 pmc |
024 | 7 | _ | |a altmetric:162911718 |2 altmetric |
037 | _ | _ | |a DZNE-2024-00514 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Galicia, Christian |0 0000-0001-6080-7533 |b 0 |
245 | _ | _ | |a Structural insights into the GTP-driven monomerization and activation of a bacterial LRRK2 homolog using allosteric nanobodies. |
260 | _ | _ | |a Cambridge |c 2024 |b eLife Sciences Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1715673296_2120 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity. |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a LRRK2 |2 Other |
650 | _ | 7 | |a Parkinson's disease |2 Other |
650 | _ | 7 | |a allosteric mechanism |2 Other |
650 | _ | 7 | |a cryo-EM |2 Other |
650 | _ | 7 | |a molecular biophysics |2 Other |
650 | _ | 7 | |a nanobodies |2 Other |
650 | _ | 7 | |a none |2 Other |
650 | _ | 7 | |a structural biology |2 Other |
650 | _ | 7 | |a Single-Domain Antibodies |2 NLM Chemicals |
650 | _ | 7 | |a Guanosine Triphosphate |0 86-01-1 |2 NLM Chemicals |
650 | _ | 7 | |a Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 |0 EC 2.7.11.1 |2 NLM Chemicals |
650 | _ | 7 | |a Bacterial Proteins |2 NLM Chemicals |
650 | _ | 2 | |a Cryoelectron Microscopy |2 MeSH |
650 | _ | 2 | |a Single-Domain Antibodies: metabolism |2 MeSH |
650 | _ | 2 | |a Single-Domain Antibodies: chemistry |2 MeSH |
650 | _ | 2 | |a Guanosine Triphosphate: metabolism |2 MeSH |
650 | _ | 2 | |a Guanosine Triphosphate: chemistry |2 MeSH |
650 | _ | 2 | |a Leucine-Rich Repeat Serine-Threonine Protein Kinase-2: metabolism |2 MeSH |
650 | _ | 2 | |a Leucine-Rich Repeat Serine-Threonine Protein Kinase-2: chemistry |2 MeSH |
650 | _ | 2 | |a Leucine-Rich Repeat Serine-Threonine Protein Kinase-2: genetics |2 MeSH |
650 | _ | 2 | |a Bacterial Proteins: metabolism |2 MeSH |
650 | _ | 2 | |a Bacterial Proteins: chemistry |2 MeSH |
650 | _ | 2 | |a Bacterial Proteins: genetics |2 MeSH |
650 | _ | 2 | |a Protein Conformation |2 MeSH |
650 | _ | 2 | |a Allosteric Regulation |2 MeSH |
650 | _ | 2 | |a Models, Molecular |2 MeSH |
650 | _ | 2 | |a Protein Multimerization |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
700 | 1 | _ | |a Guaitoli, Giambattista |0 P:(DE-2719)2811633 |b 1 |u dzne |
700 | 1 | _ | |a Fislage, Marcus |0 0000-0002-2527-2657 |b 2 |
700 | 1 | _ | |a Gloeckner, Christian Johannes |0 P:(DE-2719)2811291 |b 3 |
700 | 1 | _ | |a Versées, Wim |0 0000-0002-4695-696X |b 4 |
773 | _ | _ | |a 10.7554/eLife.94503 |g Vol. 13, p. RP94503 |0 PERI:(DE-600)2687154-3 |p RP94503 |t eLife |v 13 |y 2024 |x 2050-084X |
856 | 4 | _ | |u https://pub.dzne.de/record/269345/files/DZNE-2024-00514%20SUP.pdf |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/269345/files/DZNE-2024-00514.pdf |
856 | 4 | _ | |x pdfa |u https://pub.dzne.de/record/269345/files/DZNE-2024-00514%20SUP.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/269345/files/DZNE-2024-00514.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:269345 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)2811633 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)2811291 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ELIFE : 2022 |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-23T12:20:44Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-23T12:20:44Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-22 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-22 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-22 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-22 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ELIFE : 2022 |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-22 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-09-23T12:20:44Z |
920 | 1 | _ | |0 I:(DE-2719)1210007 |k AG Gloeckner |l Functional Neuroproteomics and Translational Biomarkers in Neurodegenerative Diseases |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1210007 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|