001     269686
005     20240809090116.0
024 7 _ |a pmc:PMC11110308
|2 pmc
024 7 _ |a 10.1186/s13104-024-06799-4
|2 doi
024 7 _ |a pmid:38773625
|2 pmid
037 _ _ |a DZNE-2024-00600
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Papazoglou, Anna
|b 0
245 _ _ |a Sex-specific cortical, hippocampal and thalamic whole genome transcriptome data from controls and a G72 schizophrenia mouse model.
260 _ _ |a London
|c 2024
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1716453932_3152
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The G72 mouse model of schizophrenia represents a well-known model that was generated to meet the main translational criteria of isomorphism, homology and predictability of schizophrenia to a maximum extent. In order to get a more detailed view of the complex etiopathogenesis of schizophrenia, whole genome transcriptome studies turn out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex, hippocampus and thalamus of G72 transgenic and wild-type control mice. Experimental animals were age-matched and importantly, both sexes were considered separately.The isolated RNA from all three brain regions was purified, quantified und quality controlled before initiation of the hybridization procedure with SurePrint G3 Mouse Gene Expression v2 8 × 60 K microarrays. Following immunofluorescent measurement und preprocessing of image data, raw transcriptome data from G72 mice and control animals were extracted and uploaded in a public database. Our data allow insight into significant alterations in gene transcript levels in G72 mice and enable the reader/user to perform further complex analyses to identify potential age-, sex- and brain-region-specific alterations in transcription profiles and related pathways. The latter could facilitate biomarker identification and drug research and development in schizophrenia research.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Brain
|2 Other
650 _ 7 |a Fold change
|2 Other
650 _ 7 |a Hippocampus
|2 Other
650 _ 7 |a Hybridization
|2 Other
650 _ 7 |a Microarray
|2 Other
650 _ 7 |a RNA
|2 Other
650 _ 7 |a Retrosplenial cortex
|2 Other
650 _ 7 |a Schizophrenia
|2 Other
650 _ 7 |a Thalamus
|2 Other
650 _ 7 |a Transcriptome
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Schizophrenia: genetics
|2 MeSH
650 _ 2 |a Schizophrenia: metabolism
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Transcriptome: genetics
|2 MeSH
650 _ 2 |a Cerebral Cortex: metabolism
|2 MeSH
650 _ 2 |a Cerebral Cortex: pathology
|2 MeSH
650 _ 2 |a Thalamus: metabolism
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a Gene Expression Profiling: methods
|2 MeSH
650 _ 2 |a Sex Factors
|2 MeSH
700 1 _ |a Henseler, Christina
|b 1
700 1 _ |a Weickhardt, Sandra
|b 2
700 1 _ |a Daubner, Johanna
|b 3
700 1 _ |a Schiffer, Teresa
|b 4
700 1 _ |a Broich, Karl
|b 5
700 1 _ |a Hescheler, Jürgen
|b 6
700 1 _ |a Sachinidis, Agapios
|b 7
700 1 _ |a Ehninger, Dan
|0 P:(DE-2719)2289209
|b 8
|u dzne
700 1 _ |a Haenisch, Britta
|0 P:(DE-2719)2810511
|b 9
|u dzne
700 1 _ |a Weiergräber, Marco
|b 10
773 _ _ |a 10.1186/s13104-024-06799-4
|g Vol. 17, no. 1, p. 143
|0 PERI:(DE-600)2413336-X
|n 1
|p 143
|t BMC Research Notes
|v 17
|y 2024
|x 1756-0500
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/269686/files/DZNE-2024-00600.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/269686/files/DZNE-2024-00600.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:269686
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2289209
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2810511
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 1
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC RES NOTES : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:07:38Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:07:38Z
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-25
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:07:38Z
920 1 _ |0 I:(DE-2719)1013005
|k AG Ehninger
|l Translational Biogerontology
|x 0
920 1 _ |0 I:(DE-2719)1013010
|k AG Hänisch
|l Pharmacoepidemiology
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013005
980 _ _ |a I:(DE-2719)1013010
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21