000270187 001__ 270187 000270187 005__ 20240808164327.0 000270187 0247_ $$2pmc$$apmc:PMC11199946 000270187 0247_ $$2doi$$a10.1101/lm.053863.123 000270187 0247_ $$2pmid$$apmid:38862172 000270187 0247_ $$2ISSN$$a1072-0502 000270187 0247_ $$2ISSN$$a1549-5485 000270187 037__ $$aDZNE-2024-00758 000270187 041__ $$aEnglish 000270187 082__ $$a150 000270187 1001_ $$0P:(DE-2719)9001354$$aChan, Chi Wai$$b0$$eFirst author$$udzne 000270187 245__ $$aFuture avenues in Drosophila mushroom body research. 000270187 260__ $$aPlainview, NY$$bCold Spring Harbor Laboratory Press$$c2024 000270187 3367_ $$2DRIVER$$aarticle 000270187 3367_ $$2DataCite$$aOutput Types/Journal article 000270187 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719822280_19445$$xReview Article 000270187 3367_ $$2BibTeX$$aARTICLE 000270187 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000270187 3367_ $$00$$2EndNote$$aJournal Article 000270187 520__ $$aHow does the brain translate sensory information into complex behaviors? With relatively small neuronal numbers, readable behavioral outputs, and an unparalleled genetic toolkit, the Drosophila mushroom body (MB) offers an excellent model to address this question in the context of associative learning and memory. Recent technological breakthroughs, such as the freshly completed full-brain connectome, multiomics approaches, CRISPR-mediated gene editing, and machine learning techniques, led to major advancements in our understanding of the MB circuit at the molecular, structural, physiological, and functional levels. Despite significant progress in individual MB areas, the field still faces the fundamental challenge of resolving how these different levels combine and interact to ultimately control the behavior of an individual fly. In this review, we discuss various aspects of MB research, with a focus on the current knowledge gaps, and an outlook on the future methodological developments required to reach an overall view of the neurobiological basis of learning and memory. 000270187 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0 000270187 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de 000270187 650_2 $$2MeSH$$aMushroom Bodies: physiology 000270187 650_2 $$2MeSH$$aAnimals 000270187 650_2 $$2MeSH$$aDrosophila: physiology 000270187 650_2 $$2MeSH$$aMemory: physiology 000270187 650_2 $$2MeSH$$aAssociation Learning: physiology 000270187 7001_ $$aChen, Nannan$$b1 000270187 7001_ $$00000-0002-0513-330X$$aHernandez, John$$b2 000270187 7001_ $$00000-0002-5625-9957$$aMeltzer, Hagar$$b3 000270187 7001_ $$00000-0001-5618-2286$$aPark, Annie$$b4 000270187 7001_ $$00000-0003-3170-1101$$aStahl, Aaron$$b5 000270187 773__ $$0PERI:(DE-600)2022057-1$$a10.1101/lm.053863.123$$gVol. 31, no. 5, p. a053863 -$$n5$$pa053863$$tLearning & memory$$v31$$x1072-0502$$y2024 000270187 8564_ $$uhttps://pub.dzne.de/record/270187/files/DZNE-2024-00758.pdf$$yOpenAccess 000270187 8564_ $$uhttps://pub.dzne.de/record/270187/files/DZNE-2024-00758.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000270187 909CO $$ooai:pub.dzne.de:270187$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000270187 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001354$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE 000270187 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0 000270187 9141_ $$y2024 000270187 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24 000270187 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000270187 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLEARN MEMORY : 2022$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000270187 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24 000270187 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24 000270187 9201_ $$0I:(DE-2719)5000069$$kAG Gründemann$$lNeural Circuit Computations$$x0 000270187 980__ $$ajournal 000270187 980__ $$aVDB 000270187 980__ $$aUNRESTRICTED 000270187 980__ $$aI:(DE-2719)5000069 000270187 9801_ $$aFullTexts