001     270308
005     20240809090117.0
024 7 _ |a pmc:PMC11181569
|2 pmc
024 7 _ |a 10.1186/s40478-024-01797-w
|2 doi
024 7 _ |a pmid:38886854
|2 pmid
024 7 _ |a altmetric:164646496
|2 altmetric
037 _ _ |a DZNE-2024-00780
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Nakos Bimpos, Modestos
|b 0
245 _ _ |a Alpha-synuclein-induced stress sensitivity renders the Parkinson's disease brain susceptible to neurodegeneration.
260 _ _ |a London
|c 2024
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719823472_19445
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A link between chronic stress and Parkinson's disease (PD) pathogenesis is emerging. Ample evidence demonstrates that the presynaptic neuronal protein alpha-synuclein (asyn) is closely tied to PD pathogenesis. However, it is not known whether stress system dysfunction is present in PD, if asyn is involved, and if, together, they contribute to neurodegeneration. To address these questions, we assess stress axis function in transgenic rats overexpressing full-length wildtype human asyn (asyn BAC rats) and perform multi-level stress and PD phenotyping following chronic corticosterone administration. Stress signaling, namely corticotropin-releasing factor, glucocorticoid and mineralocorticoid receptor gene expression, is also examined in post-mortem PD patient brains. Overexpression of human wildtype asyn leads to HPA axis dysregulation in rats, while chronic corticosterone administration significantly aggravates nigrostriatal degeneration, serine129 phosphorylated asyn (pS129) expression and neuroinflammation, leading to phenoconversion from a prodromal to an overt motor PD phenotype. Interestingly, chronic corticosterone in asyn BAC rats induces a robust, twofold increase in pS129 expression in the hypothalamus, the master regulator of the stress response, while the hippocampus, both a regulator and a target of the stress response, also demonstrates elevated pS129 asyn levels and altered markers of stress signalling. Finally, defective hippocampal stress signalling is mirrored in human PD brains and correlates with asyn expression levels. Taken together, our results link brain stress system dysregulation with asyn and provide evidence that elevated circulating glucocorticoids can contribute to asyn-induced neurodegeneration, ultimately triggering phenoconversion from prodromal to overt PD.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a alpha-Synuclein: metabolism
|2 MeSH
650 _ 2 |a alpha-Synuclein: genetics
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Parkinson Disease: metabolism
|2 MeSH
650 _ 2 |a Parkinson Disease: pathology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Rats, Transgenic
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Stress, Psychological: metabolism
|2 MeSH
650 _ 2 |a Stress, Psychological: pathology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Corticosterone: blood
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Hypothalamo-Hypophyseal System: metabolism
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Pituitary-Adrenal System: metabolism
|2 MeSH
650 _ 7 |a Parkinson’s disease
|2 Other
650 _ 7 |a Alpha-synuclein
|2 Other
650 _ 7 |a Chronic stress
|2 Other
650 _ 7 |a Corticosterone
|2 Other
650 _ 7 |a Glucocorticoids
|2 Other
650 _ 7 |a HPA axis
|2 Other
650 _ 7 |a Parkinson’s disease
|2 Other
650 _ 7 |a alpha-Synuclein
|2 NLM Chemicals
650 _ 7 |a Corticosterone
|0 W980KJ009P
|2 NLM Chemicals
650 _ 7 |a SNCA protein, human
|2 NLM Chemicals
700 1 _ |a Karali, Katerina
|0 P:(DE-2719)9002032
|b 1
|u dzne
700 1 _ |a Antoniou, Christine
|b 2
700 1 _ |a Palermos, Dionysios
|b 3
700 1 _ |a Fouka, Maria
|b 4
700 1 _ |a Delis, Anastasios
|b 5
700 1 _ |a Tzieras, Iason
|b 6
700 1 _ |a Chrousos, George Panagiotis
|b 7
700 1 _ |a Koutmani, Yassemi
|b 8
700 1 _ |a Stefanis, Leonidas
|b 9
700 1 _ |a Polissidis, Alexia
|b 10
773 _ _ |a 10.1186/s40478-024-01797-w
|g Vol. 12, no. 1, p. 100
|0 PERI:(DE-600)2715589-4
|n 1
|p 100
|t Acta Neuropathologica Communications
|v 12
|y 2024
|x 2051-5960
856 4 _ |u https://pub.dzne.de/record/270308/files/DZNE-2024-00780%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/270308/files/DZNE-2024-00780.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/270308/files/DZNE-2024-00780.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:270308
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9002032
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL COM : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:14Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA NEUROPATHOL COM : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:09:14Z
920 1 _ |0 I:(DE-2719)1740001
|k AG Garthe
|l Technology Platform Neurobiology of Behaviour
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1740001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21